Reminder
A z-score tells us the number of standard deviations above or below the mean that a value falls in a distribution.

"Cu
well be looking at
your Ch. 5 TEST

DESCRIBE the effect of: adding or subtracting a constant or multiplying or dividing by a constant

on the probability distribution of a random variable.

1. Copy the data collected from yesterday's lesson below.

X	1	5	7	10	15	25
Probability						

Mean: \qquad Standard Deviation: \qquad
$ף$
Use TI-direct

Lesson 6.2: Day 1: Time for a Raise

Mr. Cedarlund's employees have been working very hard and it's time he gives them a raise. He is trying to decide if he should give everyone a $\$ 10$ raise (add $\$ 10$ per hour) or double everyone's wage (multiply by 2).

1. Copy the data collected from yesterday's lesson below.

X	1	5	7	10	15	25
Probability						

Mean: \qquad Standard Deviation: \qquad
2. To make a decision about what raise should be given, complete the tables below and calculate the new mean and standard deviation using your calculator.
a. Option 1: Add $\mathbf{\$ 1 0}$ per hour to all employees

$X-$ Old Wage	1	+10	5	10	15	25
Y -New Wage		110	5	17	20	2
Probability	$1 / 14$	$3 / 14$	$1 / 14$	$2 / 14$	$0 / 14$	$1 / 14$

New Mean $(\mu+10)$

New Standard Deviation:
How did adding a constant affect the mean and standard deviation?

$$
\begin{aligned}
E(x)= & \sum \times 0 \\
& \text { Dean increased by }{ }^{*} \$ 0
\end{aligned}
$$

and std deviation remained the
2. To make a decision about what raise should be given, complete the tables below and calculate the new mean and standard deviation using your calculator.
a. Option 1: Add $\$ 10$ per hour to all employees

Same as previous

New Mean $(\mu+10)$: \qquad \# 15.78 2

New Standard Deviation? table

How did adding a constant affect the mean and standard deviation?

$$
\sigma=\sqrt{\sum(x-\mu)^{2} \cdot p}
$$ doubled!!!

$$
\mu=\sum x \cdot P=2\left(\frac{1}{14}\right)+10\left(\frac{3}{14}\right) \cdot \cdot=1 \cdot 02
$$

Adding or subtracting a constant: Think about a histogram for some random variable. If we added 12 to each value, this would simply slide the histogram 12 units to the right,
 - but it would not change the variability or shape.
b. Option 2: Double the wage of all employees

X - Old Wage	1	5	7	10	15	25
Z -New Wage						
Probability						

New Mean(2μ): \qquad Standard Deviation: \qquad
How did multiplying by a constant affect the mean and standard deviation?
b. Option 2: Double the wage of all employees

$X-$ Old Wage	1	5	7	10	15	25
$Z-$ New Wage	$\# 2$	$\# 10$	14	20	30	50
Probability	$2 / 17$	$3 / 17$	$7 / 17$	$3 / 17$	$0 / 17$	$2 / 17$

New Mean(2μ): \qquad Standard Deviation: \qquad
How did multiplying by a constant affect the mean and standard deviation?

Multiplying or dividing by a constant:
Think about a histogram for a rand. variable. that takes values between 1 and 8. If we multiplied each value by 10 the new histogram would go from 10 to 80

This would multiply the measures of center, location, and variability by 10 , but it would not change the shape.

These are the same results we got with transformation of summary statistics back in Ch .2

Transforming Probability Distributions

Important ideas:

Transforming Probability Distributions
Important ideas:
Adding the same constant, C, to each value \ldots

Transforming Probability Distributions

Important ideas:
Adding the same constant, c, to each value .0
Shape stays the same
adds C to the center
variability stays the
same.

Transforming Probability Distributions

Important ideas:
Adding the same constant, C, to each value
Shape stays the same adds C to the center variability stays the

Multiplying the same constant, b, to each value.
same.

Transforming Probability Distributions
Important ideas: Multiplying the same constant, b,

Adding the same constant, to each value. C, to each value

- Shape stays the same

Shape stays the same

- multiplies center by b adds C to the center Variability gets multiplied by b variability stays the same.

$$
\begin{aligned}
& S D=\pi \rightarrow b \sigma \\
& \text { STd der }=\sqrt{\operatorname{Var}} \\
& \operatorname{Var}=(b \sigma)^{2}=b^{2} \sigma^{2}
\end{aligned}
$$

Same with Normal Distributions

While the standard deviation is multiplied by b, the variance is multiplied by b^{2}.

The Effect of Adding or Subtracting a Constant

Adding the same positive number a to (subtracting a from) each value of a random variable:

- Adds a to (subtracts a from) measures of center and location (mean, median, quartiles, percentiles).
- Does not change measures of variability (range, IQR, standard deviation).
- Does not change the shape of the probability distribution.

The Effect of Multiplying or Dividing by a Constant

Multiplying (or dividing) each value of a random variable by the same positive number b :

- Multiplies (divides) measures of center and location (mean, median, quartiles, percentiles) by b.
- Multiplies (divides) measures of variability (range, IQR, standard deviation) by b.
- Does not change the shape of the distribution.

Check Your Understanding \#1 -- Everyone gets a bonus

A large corporation has thousands of employees. The distribution of annual salaries for the employees is skewed to the right, with a mean of $\$ 68,000$ and a standard deviation of $\$ 18,000$. Because business has been good this year, the CEO of the company decides that every employee will receive a $\$ 5000$ bonus. Let X be the current annual salary of a randomly selected employee before the bonus and Y be the employee's salary after the bonus. Describe the shape, center, and variability of the probability distribution of y.

Center
Variability*

Check Your Understanding \#1 -- Everyone gets a bonus
A large corporation has thousands of employees. The distribution of annual salaries for the employees is skewed to the right, with a mean of $\$ 68,000$ and a standard deviation of $\$ 18,000$. Because business has been good this year, the CEO of the company decides that every employee will receive a $\$ 5000$ bonus. Let X be the current annual salary of a randomly selected employee before the bonus and Y be the employee's salary after the bonus. Describe the shape, center, and variability of the probability distribution of y.

Shape: Skewed Right
Center: $\mu_{Y}=\mu_{x}+5000=68,000+5,000=\$ 73,000$
Variability: $\sigma_{r}=\sigma_{x}=\$ 18,000$

Check Your Understanding \#2

A large auto dealership keeps track of sales made during each hour of the day Let $X=$ the number of cars sold during the first hour of business on a randomly selected Friday. Based on previous records, the probability distribution of X is as follows:

Cars sold	0	1	2	3
Probability	0.3	0.4	0.2	0.1

The random variable X has mean $\mu_{\mathrm{x}}=1.1$ and standard deviation $\sigma_{\mathrm{x}}=0.943$.
Suppose the dealership's manager receives a $\$ 500$ bonus from the company for each car sold. Let $\mathbf{Y}=$ the bonus received from car sales during the first hour on a randomly selected Friday.

1. Sketch a graph of the probability distribution of X and a separate graph of the probability distribution of Y. How do their shapes compare?

Based on previous records, the probability distribution of X is as follows:

Cars sold	0	1	2	3
Probability	0.3	0.4	0.2	0.1

The random variable X has mean $\mu_{\mathrm{x}}=1.1$ and standard deviation $\sigma_{\mathrm{x}}=0.943$.
Suppose the dealership's manager receives a $\$ 500$ bonus from the company for each car sold. Let $\mathbf{Y}=$ the bonus received from car sales during the first hour on a randomly selected Friday.

1. Sketch a graph of the probability distribution of X and a separate graph of the probability distribution of \mathbf{Y}. How do their shapes compare?

Based on previous records, the probability distribution of X is as follows:

Cars sold	0	1	2	3
Probability	0.3	0.4	0.2	0.1

The random variable X has mean $\mu_{\mathrm{x}}=1.1$ and standard deviation $\sigma_{\mathrm{x}}=0.943$.
Suppose the dealership's manager receives a $\$ 500$ bonus from the company for each car sold. Let $\mathbf{Y}=$ the bonus received from car sales during the first hour on a randomly selected Friday.

1. Sketch a graph of the probability distribution of X and a separate graph of the probability distribution of Y. How do their shapes compare?

$$
\text { DISTRIbution af } Y
$$

Based on previous records, the probability distribution of X is as follows:

Cars sold	0	1	2	3
Probability	0.3	0.4	0.2	0.1

The random variable X has mean $\mu_{\mathrm{x}}=1.1$ and standard deviation $\sigma_{\mathrm{x}}=0.943$.
Suppose the dealership's manager receives a $\$ 500$ bonus from the company for each car sold. Let $\mathbf{Y}=$ the bonus received from car sales during the first hour on a randomly selected Friday.

1. Sketch a graph of the probability distribution of X and a separate graph of the probability distribution of \mathbf{Y}. How do their shapes compare?

$$
\text { DisTRibution af } Y_{1}
$$

Based on previous records, the probability distribution of X is as follows:

Cars sold	0	1	2	3
Probability	0.3	0.4	0.2	0.1

The random variable X has mean $\mu_{\mathrm{x}}=1.1$ and standard deviation $\sigma_{\mathrm{x}}=0.943$. Suppose the dealership's manager receives a $\$ 500$ bonus from the company for each car sold. Let $\mathbf{Y}=$ the bonus received from car sales during the first hour on a randomly selected Friday.

1. Sketch a graph of the probability distribution of X and a separate graph of the probability distribution of Y. How do their shapes compare?

DISTRIbution af Y

\square
2. Find the mean of \mathbf{Y}. $\mu_{Y}=1.1 \mu_{X}=1.1$ (900)

$$
\$ 5.50
$$

3. Calculate and interpret the standard deviation of \mathbf{Y}.

$$
\sigma_{y}=0.943 .500=421.70
$$

$$
\text { The bonus received typically varies lay out } \$ 471.20
$$

4. The manager spends $\$ 75$ to provide coffee and doughnuts to prospective customers each morning. So, the manager's net profit T during the first hour on a randomly selected Friday is $\$ 75$ less than the bonus earned. Describe the shape, center, and variability of the probability distribution of T.

$$
\begin{aligned}
& \text { Shape. Skewed rant } \\
& \text { Center } \cdot M y=550-75=\$ 475= \\
& \text { variability: } 471.7
\end{aligned}
$$

2. Find the mean of \mathbf{Y}. $\mu_{Y}=1.1 \times 500=\$ 550$
3. Calculate and interpret the standard deviation of \mathbf{Y}.

$$
\sigma_{Y}=0.943 \times 500=\$ 471.50
$$

$\sigma_{Y}=0.943 \times 500=$
The bonuses typically vary by $\$ 471.50$
from the mean (3550)
4. The manager spends $\$ 75$ to provide coffee and doughnuts to prospective customers each morning. So, the manager's net profit T during the first hour on a randomly selected Friday is $\$ 75$ less than the bonus earned. Describe the shape, center, and variability of the probability distribution of T.
The shape will remain the same. The mean will be subtracted by 75 .

$$
(\mu=550-75=\$ 475)
$$

The SD does not change

$$
(\sigma=471.70)
$$

Employees selling refrigerators at an appliance store make money on commission based on how many refrigerators they sell. The number of refrigerators R sold in a randomly selected hour has the following probability distribution:

Number of refrigerators	0	1	2	3	4	5
Probability	0.22	0.31	0.12	0.25	0.08	0.02

Here is a histogram of the probability distribution along with the mean and standard deviation.

At this appliance store, the commission earned is $\mathbf{\$ 3 0}$ for each refrigerator sold. That is, if $C=$ total commission earned for a randomly selected hour, $C=30 R$.

Number of refrigerators	0	1	2	3	4	5
Probability	0.22	0.31	0.12	0.25	0.08	0.02

Here is a histogram of the probability distribution along with the mean and standard deviation.

At this appliance store, the commission earned is $\mathbf{\$ 3 0}$ for each refrigerator sold. That is, if $C=$ total commission earned for a randomly selected hour, $C=30 R$.
(a) What shape does the probability distribution of C have?
(a) What shape does the probability distribution of C have?

- The same shape as the prob. distrib. of R - slightly skewed right with two peaks
(b) Find the mean of C .

$$
\mu_{c}=30 \mu_{R}=30(1.72)=451.60
$$

(c) Calculate the standard deviation of C .

$$
\sigma_{c}=30 \sigma_{R}=30(1.36)=\$ 40.80
$$

See your ch. 5 Test

6.237, 39, 41, 43, 47, 75
study pp. 381-387 and be sure to study the example on p. 387

