

No cell phones out `()Z we'll be looking at your Ch. 5 Test

DESCRIBE the effect of: **adding or subtracting a constant** or multiplying or dividing by a constant

on the probability distribution of a random variable.

everyone's wage (multiply by 2). Copy the data collected from yesterday's lesson below.								
x	1	5	· · ·		15	20		
Probability								

~			-	son below.		
X	1	5	7	10	15	25
Probability						

X – Old Wage	1	5	7	10	15	25	
Z - New Wage							
Probability							
ew Mean(2μ): ow did multip				lard Deviation: ean and stan		ion?	
						ion?	
						ion?	

X – Old Wage	1	5	7	10	15	25
Z - New Wage	#2	# 10	#14	# 20	[#] 30	\$50
Probability	2/17	3/17	7/7	3/17	217	2/17
··· Maan (2).						
w Mean(2µ): ow did multip		onstant affe		Deviation:	rd deviation	- ?
		onstant affe			rd deviation	- ?
		onstant affe			rd deviation	- ?
		onstant affe			rd deviation	- ?

These are the same results we got with transformation of summary statistics back in ch.2

	Transforming Probability Distributions
Important ideas:	

Transforming Probability Distributions
Important ideas:
Adding the same constant, b,
to each value...
Shape stays the same
adds C to the center
Vartability stays the
Same.

$$SD = 0 \rightarrow 000$$

 $Std_{dev} = \sqrt{var}$
 $Var = (bo)^2 = b^2 o^2$

Check Your Understanding #1 -- Everyone gets a bonus

A large corporation has thousands of employees. The distribution of annual salaries for the employees is skewed to the right, with a mean of \$68,000 and a standard deviation of \$18,000. Because business has been good this year, the CEO of the company decides that every employee will receive a \$5000 bonus. Let X be the current annual salary of a randomly selected employee before the bonus and Y be the employee's salary after the bonus. Describe the shape, center, and variability of the probability distribution of Y.

shape : Center : Variability :

Check Your Understanding #1 -- Everyone gets a bonus

A large corporation has thousands of employees. The distribution of annual salaries for the employees is skewed to the right, with a mean of \$68,000 and a standard deviation of \$18,000. Because business has been good this year, the CEO of the company decides that every employee will receive a \$5000 bonus. Let X be the current annual salary of a randomly selected employee before the bonus and Y be the employee's salary after the bonus. Describe the shape, center, and variability of the probability distribution of Y.

Shape: Skewed Right Center: $\mu_{r} = \mu_{x} + 5000 = 68,000 + 5,000 = #73,000$ Variability: $\sigma_{r} = \sigma_{x} = #18,000$

Г

	Cars sold	0	1	2	3
	Probability	0.3	0.4	0.2	0.1
Suppose the de	riable X has mean µ alership's manager us received from c	receives a s	\$500 bonus	from the	company
Sketch a graph of [.]	the probabi	lity dis [.]	tributic	on of X	and a
÷ 1					
- 1					
÷ 1					
÷ 1					
Sketch a graph of [.] probability distribu					
÷ 1					

 $-\mu_{\rm Y} = 1.1\mu_{\rm X} = 1.1(900)$ 2. Find the mean of Y. #550 \swarrow 3. Calculate and interpret the standard deviation of Y. $5_{v} = 0.943.500 = 47.670$ The bonus received typically varies by about \$ 411.70 4. The manager spends \$75 to provide coffee and doughnuts to prospective customers each morning. So, the manager's net profit T during the first hour on a randomly selected Friday is \$75 less than the bonus earned. Describe the shape, center, and variability of the probability distribution of T. Shape - Skewed right ClNHer = MY= 550-75= 1475= variability=971.7

2. Find the mean of Y. $\mu_Y = 1.1 \times 500 = 7550$
3. Calculate and interpret the standard deviation of Y. Or = 0.943 * 500 = #471,50 The bonuses typically vary by #471.50 from the mean (#550)
trom me

4. The manager spends \$75 to provide coffee and doughnuts to prospective customers each morning. So, the manager's net profit T during the first hour on a randomly selected Friday is \$75 less than the bonus earned. Describe the shape, center, and variability of the probability distribution of T. The shape will remain the same. The mean will be subtracted by 75. $(\mu = 550 - 75 = #475)$ The SD does not change $(\sigma = 471.70)$

Employees selling refrigerators at an appliance store make money on commission based on how many refrigerators they sell. The number of refrigerators *R* sold in a randomly selected hour has the following probability distribution:

Number of refrigerators	0	1	2	3	4	5
Probability	0.22	0.31	0.12	0.25	0.08	0.02

Here is a histogram of the probability distribution along with the mean and standard deviation.

At this appliance store, the commission earned is \$30 for each refrigerator sold. That is, if C = total commission earned for a randomly selected hour, C = 30R.

6.237, 39, 41, 43, 47, <u>75</u>

study pp. 381-387 and be sure to study the example on p. 387