

Where are the best tacos?

A survey of all students at a large high school revealed that, in the last month, 38% of them had dined at Taco Bell, 16% had dined at Chipotle, and 9% had dined at both. Suppose we select a student at random. What's the probability that the student has dined at Taco Bell or Chipotle in the last month?
a)
b) Now create a Venn Diagram to display the sample space in a different way.
3. Where are the best tacos?

A survey of all students at a large high school revealed that, in the last month, 38% of them had dined at Taco Bell, 16% had dined at Chipotle, and 9% had dined at both. Suppose we select a student at random. What's the probability that the student has dined at Taco Bell or Chipotle in the last month?
General $=P($ tacozell OR chipotle

$$
\begin{aligned}
& =P(\text { Taco Bell OR ChipoJie } \\
& =P(\text { THEeS })+P(\text { Chipotle })-P(\text { Tach and Chipotle }) \\
& =.38+.16-.09=.45 \\
& \text { Venn Diagram to display the sample space in a different way. }
\end{aligned}
$$

Now create a Venn Diagram to display the sample space in a different way.

\square

CALCULATE and INTERPRET conditional probabilities.

DETERMINE if two events are independent.
USE the general multiplication rule to CALCULATE probabilities.

CALCULATE and INTERPRET conditional probabilities.

DETERMINE if two events are independent.
USE the general multiplication rule to CALCULATE probabilities.

Day 2 of
Can You Taco Tongue and Evil Eyebrow?
5.3 Day 1

Are the events "Yes Taco Tongue" and "Yes Evil Eyebrow" independent events?

1. Find class data from the previous lesson and fill in the following two-way table.

Day 2 of
Can You Taco Tongue and Evil Eyebrow?
5.3 Day 1

Are the events "Yes Taco Tongue" and "Yes Evil Eyebrow" independent events?

1. Find class data from the previous lesson and fill in the following two-way table.

Yes Taco Tongue
No Taco Tongue
Total

Suppose we randomly choose a student from class.

2. Find $P($ Yes Taco Tongue OR Yes Evil Eyebrow)
3. Given that the person selected is a Yes Evil Eyebrow, what is the probability that they are a Yes Taco Tongue? Write as a fraction, a decimal, and a percent.
4. Given that the person selected is a No Evil Eyebrow, what is the probability that they are a Yes Taco Tongue? Write as a fraction, a decimal, and a percent.

Definition: Two events are independent if knowing whether or not one event has occurred does not change the probability that the other event will occur.
5. Are the events "Yes Taco Tongue" and "Yes Evil Eyebrow" independent? Explain.

> Yes Taco Tongue
> No Taco Tongue
> Total

Suppose we randomly choose a student from class.
2. Find $\mathrm{P}($ Yes Taco Tongue OR Yes Evil Eyebrow)

$$
\frac{9}{12}+\frac{5}{12}-\frac{4}{12}=\frac{10}{12}
$$

3. Given that the person selected is a Yes Evil Eyebrow, what is the probability that they are a Yes Taco Tongue? Write as a fraction, a decimal, and a percent.

$$
\frac{4}{5}=80=80^{0 / 0}
$$

4. Given that the person selected is a No Evil Eyebrow, what is the probability that they are a Yes Taco Tongue? Write as a fraction, a decimal, and a percent

$$
\frac{5}{7}=.714=71.4 \%
$$

Definition: Two events are independent if knowing whether or not one event has occurred does not change the probability that the other event will occur.
5. Are the events "Yes Taco Tongue" and "Yes Evil Eyebrow" independent? Explain. No! knowing whether or not a student is Yes or No Evil Eyebrow changes the probability they are Yes Taco Tongue
from 80% to 71.4%

$$
\text { from } 80^{\%} \text { to } 71.4 \%
$$

Suppose we randomly choose a student from class.
2. Find $\mathrm{P}($ Yes Taco Tongue OR Yes Evil Eyebrow)

$$
\frac{9}{12}+\frac{5}{12}-\frac{4}{12}=\frac{10}{12}
$$

3. Given that the person selected is a Yes Evil Eyebrow, what is the probability that they are a Yes Taco Tongue? Write as a fraction, a decimal, and a percent.

$$
\frac{4}{5}=80=80^{0} 0
$$

4. Given that the person selected is a No Evil Eyebrow, what is the probability that they are a Yes Taco Tongue? Write as a fraction, a decimal, and a percent.

$$
\frac{5}{7}=714=71.40 \%
$$

Definition: Two events are independent if knowing whether or not one event has occurred does not change the probability that the other event will occur.
5. Are the events "Yes Taco Tongue" and "Yes Evil Eyebrow" independent? Explain. No! Knowing whether or not a student is Yes or No Evil Eyebrow changes the probability they are Yes Taco Tongue from 80% to 71.4%

No Taco Tongue
Total

Yes Evil Eyebrow	No Evil Eyebrow	Total 4
1	5	3
5	7	12

Suppose we randomly choose a student from class.
2. Find $\mathrm{P}($ Yes Taco Tongue OR Yes Evil Eyebrow)

$$
\frac{9}{12}+\frac{5}{12}-\frac{4}{12}=\frac{10}{12}
$$

3. Given that the person selected is a Yes Evil Eyebrow, what is the probability that they are a Yes Taco Tongue? Write as a fraction, a decimal, and a percent

$$
\frac{4}{5}=80=80^{\%} \quad P(\text { Yes IacoTongue | Hes EvilEpebrow) }
$$

4. Given that the person selected is a No Evil Eyebrow, what is the probability that they are a Yes Taco Tongue? Write as a fraction, a decimal, and a percent

$$
\frac{5}{7}=714=71.4 \% \text { P(NesTaroTongueN No Evil Eyebrow) }
$$

Definition: Two events are independent if knowing whether or not one event has occurred does not change the probability that the other event will occur.
5. Are the events "Yes Taco Tongue" and "Yes Evil Eyebrow" independent? Explain. No! Knowing whether or not a student is Yes or No Evil Eyebrow changes the probability they are Yes Taco Tongue from $80^{0 / 0}$ to $71.4^{0 / 0}$

Consider the data for ail Seniors at emirs

6. Find each of the following using the data in the table. Write as a fraction, a decimal, and a percent.
a. $\mathrm{P}($ Yes Taco Tongue $)=$
b. $P($ Yes Taco Tongue | Yes Evil Eyebrow $)=$
c. $\mathrm{P}(\mathrm{Yes}$ Taco Tongue | No Evil Eyebrow $)=$
d. Are "Yes Taco Tongue" and "Yes Evil Eyebrow" independent?

Consider the data for all Seniors at ExiTS.

6. Find each of the following using the data in the table. Write as a fraction, a decimal, and a percent.
a. $\mathrm{P}($ Yes Taco Tongue $)=$

b. $\mathrm{P}($ Yes Taco Tongue | Yes Evil Eyebrow) $=$

\qquad $0.9=90^{\%}$
c. $P($ Yes Taco Tongue | No Evil Eyebrow $)=300 / 400=0.75=75 \%$
d. Are "Yes Taco Tongue" and "Yes Evil Eyebrow" independent?

	Yes Evil Eyebrow	No Evil Eyebrow	Total
Yes Taco Tongue	180	300	480
No Taco Tongue	20	100	120
Total	200	400	600

7. Fill in the table as if the events were INDEPENDENT.

	Yes Evil Eyebrow	No Evil Eyebrow	Total
Yes Taco Tongue			480
No Taco Tongue			120
Total	200	400	600

8. Find each of the following using the INDEPENDENT table. Write as a fraction, a decimal, and a percent.
a. $\mathrm{P}($ Yes Taco Tongue $)=$
b. $\mathrm{P}($ Yes Taco Tongue | Yes Evil Eyebrow $)=$
c. $P($ Yes Taco Tongue | No Evil Eyebrow $)=$

	Yes Evil Eyebrow	No Evil Eyebrow
Total		
	180	300
Yes Taco Tongue	480	
No Taco Tongue	20	100
Total	200	400

7. Fill in the table as if the events were INDEPENDENT.

Yes Taco Tongue	Yes Evil Eyebrow	No Evil Eyebrow	Total
			480
No Taco Tongue			120
Total	200	400	600

8. Find each of the following using the INDEPENDENT table. Write as a fraction, a decimal, and a percent.
a. $\mathrm{P}($ Yes Taco Tongue $)=$
b. $P($ Yes Taco Tongue | Yes Evil Eyebrow $)=$
c. $\mathrm{P}($ Yes Taco Tongue | No Evil Eyebrow $)=$

9. Find each of the following using the INDEPENDENT table. Write as a fraction, a decimal, and a percent.
a. $\mathrm{P}($ Yes Taco Tongue $)=$
b. $\mathrm{P}($ Yes Taco Tongue | Yes Evil Eyebrow $)=$
c. $P($ Yes Taco Tongue | No Evil Eyebrow $)=$

	Yes Evil Eyebrow	No Evil Eyebrow
Yes Taco Tongue	180	300
No Taco Tongue	20	100
Total	200	400

7. Fill in the table as if the events were INDEPENDENT.

Yes Taco Tongue	Yes Evil Eyebrow	No Evil Eyebrow
No Taco Tongue		
Total	200	400

8. Find each of the following using the INDEPENDENT table. Write as a fraction, a decimal, and a percent.
a. $\mathrm{P}($ Yes Taco Tongue $)=$
b. $P($ Yes Taco Tongue | Yes Evil Eyebrow $)=$
c. P(Yes Taco Tongue | No Evil Eyebrow) =

9. Fill in the table as if the events were INDEPENDENT.

10. Find each of the following using the INDEPENDENT table. Write as a fraction, a decimal, and a percent.
a. $\mathrm{P}($ Yes Taco Tongue $)=$
b. $\mathrm{P}($ Yes Taco Tongue | Yes Evil Eyebrow $)=$
c. $P($ Yes Taco Tongue | No Evil Eyebrow $)=$

Total

120 600
7. Fill in the table as if the events were INDEPENDENT.

8. Find each of the following using the INDEPENDENT table. Write as a fraction, a decimal, and a percent.
a. $\mathrm{P}($ Yes Taco Tongue $)=$
b. $P($ Yes Taco Tongue | Yes Evil Eyebrow $)=$
c. $\mathrm{P}($ Yes Taco Tongue | No Evil Eyebrow) $=$

co if Taco Tongue	Yes Evil Eyebrow	No Evil Eyebrow	Total
	180	300	0
	20	100	0
what percent Total		ongue	600

7. Fill in the table as if the events were INDEPENDENT.

8. Find each of the following using the INDEPENDENT table. Write as a fraction, a decimal, and a percent.
a. $P($ Yes Taco Tongue $)=$
b. $\mathrm{P}($ Yes Taco Tongue | Yes Evil Eyebrow) $=$
c. $\mathrm{P}($ Yes Taco Tongue | No Evil Eyebrow $)=$

if Taco Tongue	Yes Evil Eyebrow	No Evil Eyebrow	Total
	180	300	480
	20	100	120
percent Total Eyeb	200	400	600

7. Fill in the table as if the events were INDEPENDENT.

8. Find each of the following using the INDEPENDENT table. Write as a fraction, a decimal, and a percent.
a. $P($ Yes Taco Tongue $)=$
b. $\mathrm{P}($ Yes Taco Tongue | Yes Evil Eyebrow) $=$
c. $\mathrm{P}($ Yes Taco Tongue | No Evil Eyebrow) $=$

co if Taco Tongue	Yes Evil Eyebrow	No Evil Eyebrow	Total
	180	300	480
	20	100	120
what percent of Yotal	200	ongue	600

7. Fill in the table as if the events were INDEPENDENT.

8. Find each of the following using the INDEPENDENT table. Write as a fraction, a decimal, and a percent.
a. $\mathrm{P}($ Yes Taco Tongue $)=$
b. $\mathrm{P}($ Yes Taco Tongue | Yes Evil Eyebrow $)=$
c. $P($ Yes Taco Tongue | No Evil Eyebrow $)=$

	Yes Evil Eyebrow	No Evil Eyebrow
Total		
	180	300
Yes Taco Tongue	480	
No Taco Tongue	20	100
Total	200	400

7. Fill in the table as if the events were INDEPENDENT.

8. Find each of the following using the INDEPENDENT table. Write as a fraction, a decimal, and a percent.
a. $\mathrm{P}($ Yes Taco Tongue $)=$
b. $P($ Yes Taco Tongue | Yes Evil Eyebrow $)=$
c. $\mathrm{P}($ Yes Taco Tongue | No Evil Eyebrow $)=$

	Yes Evil Eyebrow	No Evil Eyebrow	Total
Yes Taco Tongue	180	300	480
No Taco Tongue	20	100	120
Total	200	400	600

7. Fill in the table as if the events were INDEPENDENT.

8. Find each of the following using the INDEPENDENT table. Write as a fraction, a decimal, and a percent.
a. $P($ Yes Taco Tongue $)=$
b. $\mathrm{P}($ Yes Taco Tongue | Yes Evil Eyebrow $)=$
c. $\mathrm{P}($ Yes Taco Tongue | No Evil Eyebrow $)=$

	Yes Evil Eyebrow	No Evil Eyebrow
Total		
	180	300
Yes Taco Tongue	480	
No Taco Tongue	20	100
Total	200	400

7. Fill in the table as if the events were INDEPENDENT.

8. Find each of the following using the INDEPENDENT table. Write as a fraction, a decimal, and a percent.
a. $P($ Yes Taco Tongue $)=$
b. $\mathrm{P}($ Yes Taco Tongue | Yes Evil Eyebrow) $=$
c. $\mathrm{P}($ Yes Taco Tongue | No Evil Eyebrow $)=$

9. Fill in the table as if the events were INDEPENDENT.

10. Find each of the following using the INDEPENDENT table. Write as a fraction, a decimal, and a percent.
a. $P($ Yes Taco Tongue $)=\frac{480}{600}=8=80^{\prime}$
b. $P($ Yes Taco Tongue | Yes Evil Eyebrow $)=\frac{160}{200}$

c. $P($ Yes Taco Tongue | No Evil Eyebrow $\left.)=\frac{320}{400}=0.8=80\right)^{\circ}$
11. What do you notice about your answers in \#6 and \#8?
12. Generalize: Complete the following statement using a formula.

Let $A \rightarrow$ Yes Taco Tongue and $B \rightarrow$ Yes Evil Eyebrow

If events A and B are INDEPENDENT then...
9. What do you notice about your answers in \#6 and \#8? When events are not indep all 3 prob are different. when events are independent, all 3 prob. are equal
10. Generalize: Complete the following statement using a formula.

Let $A \rightarrow$ Yes Taco Tongue and B \rightarrow Yes Evil Eyebrow

If events A and B are INDEPENDENT then...

$$
P(A \mid B)=P\left(A \mid B^{c}\right)
$$

Conditional Probability and Independence

Big Ideas:

Conditional Probability and Independence

Big Ideas:
Conditional Probability Independent Events
$P(A \mid B)$ is the
"probability of
A, given B^{\prime}

Conditional Probability and Independence

Big Ideas:
Conditional Probability
$P(A \mid B)$ is the "probability of A, given B^{\prime}

Independent Events Knowing whether or not one event has occurred does not change the probability that the other event will occur
$P(A)=P(A \mid B)=P\left(A \mid B^{c}\right)$
but try to use context as much as possible.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \begin{array}{cc}
\text { Probability of } \\
\text { both }
\end{array}
$$

Check Your Understanding:

Yellowstone National Park surveyed a random sample of 1526 winter visitors to the park. They asked each person whether he or she owned, rented, or had never used a snowmobile. Respondents were also asked whether they belonged to an environmental organization (like the Sierra Club). The two way table summarizes the survey responses.

Suppose we randomly select one of the survey respondents. Define events E: environmental club member, S: snowmobile owner, and N : never used.

1. Find $\underline{\underline{P}(N \mid E) . ~ I n t e r p r e t ~ t h i s ~ v a l u e ~ i n ~ c o n t e x t . ~}$

Check Your Understanding:

Yellowstone National Park surveyed a random sample of 1526 winter visitors to the park. They asked each person whether he or she owned, rented, or had never used a snowmobile. Respondents were also asked whether they belonged to an environmental organization (like the Sierra Club). The two way table summarizes the survey responses.

Suppose we randomly select one of the survey respondents. Define events E: environmental club member, S : snowmobile owner, and N : never used.

1. Find $\mathrm{P}(\mathrm{N} \mid \mathrm{E})$. Interpret this value in context.

The probability that someone has never used a snow mobile given they are in the environ mental club. $=$ 212/305

	Environmental club			
		No	Yes	Total
Snowmobile experience	Never used	445	212	657
	Renter	497	77	574
	Owner	279	16	295
	Total	1221	305	1526

2. Given that the chosen person is not a snowmobile owner, what's the probability that she or he is an environmental club member? Write your answer as a probability statement using correct symbols for the events.
3. Are the events "Snowmobile owner" and "Environmental club member" independent? Explain.

	Environmental club				
		No	Yes	Total	
Snowmobile experience	Never used	445	212	657	
	Renter	497	77	574	
	Owner	279	16	295	
	Total	1221	305	1526	
				$\sim \sim$	

2. Given that the chosen person is not a snowmobile owner, what's the probability that she or he is an environmental club member? Write your answer as a probability statement using correct symbols for the

$$
P\left(E \mid S^{c}\right)=\frac{212+77}{657+574}=\frac{289}{1231}=.23
$$

3. Are the events "Snowmobile owner" and "Environmental club member" independent? Explain. $P($ snowmobile $)=\frac{295}{1520}=.19$ $P($ snowmobile \mid Environ $)=16 / 305=.05$
$P\left(\right.$ Snowmobile \mid Environ $\left.^{c}\right)=\frac{279}{1221}=.23$

No.
$P(s) \neq P(s \mid E) \neq P\left(s \mid E^{c}\right)$ If you are in the environmental
club you are less likely to to be a snowmobile owner. on AP exams for not showing enough work (detail) on probability questions
 and then 00 . .o se

Extra Extra Practice \#this material can potentially more difficult
5.3.... 61-71 (odds), 77, 79
study pp. 330-338

