Good Morning

\because
FYI The Personal Project Check PPC UNit 1-IDCQ B was added to your grades

Also yesterday, I instructed synergy to drop up to 2 LCQ's.
Way to go volleyball team! and Sirs Soccer!

1. Simulation

2. Sample Space

3. Two-Way Table
4. Venn Diagram
5. Tree Diagram
6. Formulas

Sample Spaces can vary
from simple

Tossing two coins (4 possible outcomes)
HI HT TM

User complicated
When the Gallop poll takes a random sample of 1532 U.S. adults from the entire population (240 million)
How many combinations?
$\rightarrow \quad$ of samples of size 1.8×10^{8575} possible 1532 when choosing from 240 million.

Give a probability model for a chance process with equally likely outcomes and use it to find the probability of an event.

> In Section 5.1, we used simulation to imitate chance behavior. Fortunately, we don't have to always rely on simulations to determine the probability of a particular outcome.

A probability model is a description of some chance process that consists of two parts: a list of all possible outcomes and the probability for each outcome.
The list of all possible outcomes is called the sample space.

Give a probability model for a chance process with equally likely outcomes and use it to find the probability of an event.

Use basic probability rules, including the complement rule and the addition rule for mutually exclusive events.

Get a partner.
Decide who will be ODD and who will be EVEN

We're going to play a game to answer this question. You and your partner must decide who will be "Odds" and who will be "Evens". Then you will roll two dice and multiply the numbers. If the product is odd, the odds person wins and vice versa for evens. Play 20 times, keeping track of how many wins each person has.

We're going to play a game to answer this question. You and your partner must decide who will be "Odds" and who will be "Evens". Then you will roll two dice and multiply the numbers. If the product is odd, the odds person wins and vice versa for evens. Play 20 times, keeping track of how many wins each person has.
Play twice (2 trids)

Pick up the hand out when finished.

Whole Class Results - Record Number of times odds won

 U

Maybe the odds just had a run of bad luck. Let's see how the rest of the class did with odds. Write the number of odds wins for your group in the table on the board.
2. Find the total percent of rolls that were odd products for the whole class. 240
\qquad How does this compare to your group's results?
products that we could get. Complete the table below to show all possible products (multiply).
4. Use your table to find the probability of rolling an odd product.
5. Which was closer to the percentage you found in \#4, your group data or the classroom data? Why do you think that is?

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

6. Use the table to find the probability of rolling each of the following products:
4 or a 5
b) Number besides 6
c) Number from 1 to 36
7. Use your table to find the probability of rolling an odd product.
8. Which was closer to the percentage you found in \#4, your group data or the classroom data? Why do you think that is?

$$
\frac{9 \text { otc ls }}{36 \text { outcomes }}=\frac{1}{4}=.25
$$

	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	8	10	12
3	3	6	9	12	15	18
4	4	8	12	16	20	24
5	5	10	15	20	25	30
6	6	12	18	24	30	36

6. Use the table to find the probability of rolling each of the following products:

U'omplement'l
b) Number besides 6
$32 / 36$
b) Number besides 6
$32 / 36$

4 or a 5
c) Number from 1 to 36

$$
1-\frac{4}{36}
$$

$\frac{2}{36}+\frac{3}{36}$
products that we could get. Complete the table below to show all possible products (multiply).
4. Use your table to find the probability of rolling an odd product.
5. Which was closer to the percentage you found in \#4, your group data or the classroom data? Why do you think that is?

	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	8	0	12
3	3	6	9	12	5	8
4	4	8	12	16	10	4
5	5	10	15	10	25	30
6	6	12	18	24	30	36

6. Use the table to find the probability of rolling each of the following products:
4 or a 5
b) Number besides 6
c) Number from 1 to 36
3. To determine the true probability of rolling an odd product, we should list out all possible
products that we could get. Complete the table below to show all possible products (multiply).
7. Use your table to find the probability of rolling an odd product.

$$
\frac{9 \text { odds }}{36 \text { outcomes }}=\frac{1}{4}=0.25
$$

5. Which was closer to the percentage you found Why, your group data or the classroom data? Why do you think that is? The class data is closer because there are more palls. Lang term is predictable

$$
\begin{aligned}
& \text { Vols. Long term IS predictable with probability, } \\
& \text { 6. Use the table to find the probability of rolling each of the following products: } \\
& \text { "OR" Prob, MiNuit, add to I } \\
& \begin{array}{lll}
\text { a) } 4 \text { or a } 5 & \text { b) Number besides } 6 & \text { c) Number between } 1 \text { and } 36
\end{array} \\
& \frac{3}{36}+\frac{2}{36}=\frac{5}{36} \quad 1-\frac{4}{36}=\frac{32}{36}
\end{aligned}
$$

	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	8	10	12
3	3	6	9	12	15	18
4	4	8	12	16	20	24
5	5	10	15	20	25	30
6	6	12	18	24	30	36

\square

Basic Probability Rules

Basic Probability Rules

AP TIP
Students will lose any chance for partial credit if you conclude a probability is less than 0 or greater than 1. probabilities (and add/subract fraction)

Since the dice are fair, each outcome is equally likely. Each outcome has probability 1/36.

Basic Probability Rules

Probability Model/ Complement
list all possible outcomes and their probabilities

- Must add to 1
- each prob. is
between 0 and 1

Mutually Exclusive

General Addition Rule

Basic Probability Rules

Probability Model list all possible outcomes and their probabilities.

- Must add to 1
- each prob. is
between 0 and 1

Complement - Prob of an event not happening $P\left(A^{c}\right)=1-P(A)$ Mutually Exclusive

General Addition Rule

Other common notation for Compliment A^{c}
A^{\prime}

$$
\sim A
$$

incorrect $P(B)^{c}$ correct $P\left(B^{c}\right)$

An event is any collection of outcomes from some chance process.
Let $A=$ getting a sum of 5 when two fair dice are rolled

There are 4 outcomes that result in a sum of 5 .
\square
\square
Complement - Probability of not getting a sum of 5 .
since $P(A)=\frac{4}{36}$

$$
\begin{aligned}
& P\left(A^{c}\right)=1-\frac{4}{36}= \\
& \frac{36}{36}-\frac{4}{36}=\frac{32}{36}
\end{aligned}
$$

Basic Probability Rules
Probability Model Complement - Prob. of an event list all possible outcomes and their probabilities. not happening $P\left(A^{c}\right)=1-P(A)$ Mutually Exclusive
Events that cannot occur together

- Must add to 1
- each prob. is between 0 and I

General Addition Rule

$$
\begin{aligned}
& \text { General Addicts } \\
& P(A \text { or } B)= P(A \cup B)=P(A)+P(B) \\
& \text { of events are mutule. Excl }
\end{aligned}
$$

AND WHAT MADE YOU THINK YOU COULD BEAT ROCK?

Rock Paper Scissors

There is a website where humans can play paper, scissors, rock with a computer. Irresistibly drawn to it, you play the game 2 times. Assume that the computer is randomly choosing its moves for both games.
(a) Give a probability model for the computer's chance process.

(b) Define event A as the computer chooses the same move for both games. Find $P(A)$.

Rock Paper Scissors
There is a website where humans can play paper, scissors, rock with a computer. Irresistibly drawn to it, you play the game 2 times. Assume that the computer is randomly choosing its moves for both games.
(a) Give a probability model for the computer's chance process.

Because the computer is randomly choosing

(b) Define event A as the computer chooses the same move for both games. Find $P(A)$. There are 3 outcomes with the computer choosing the same move for both games PP SS RR

$$
\text { so. } P(A)=\frac{3}{9}=0.333
$$

\square
2. Suppose you tear open the corner of a bag of M\&M'S® Milk Chocolate Candies, pour one candy into your hand, and observe the color. According to Mars, Inc., the maker of M\&M'S, the probability model for a bag from its Cleveland factory is:

Color	Blue	Orange	Green	Yellow	Red	Brown
Probability	0.207	0.205	0.198	0.135	0.131	0.124

(a) Explain why this is valid probability model.

(b) Explain why events Red and Blue are mutually exclusive

$$
\begin{aligned}
& \text { An } M \stackrel{m}{2} \text { cannot be } \\
& \text { both blue and red. }
\end{aligned}
$$

2. Suppose you tear open the corner of a bag of M\&M'S® Milk Chocolate Candies, pour one candy into your hand, and observe the color. According to Mars, Inc., the maker of M\&M'S, the probability model for a bag from its Cleveland factory is:

Color	Blue	Orange	Green	Yellow	Red	Brown
Probability	0.207	0.205	0.198	0.135	0.131	0.124

(a) Explain why this is a valid probability model.

(b) Explain why events Red and Blue are mutually exclusive mas in's cannot blue and reed

Suppose you tear open the corner of a bag of M\&M'S® Milk Chocolate Candies, pour one candy into your hand, and observe the color. According to Mars, Inc., the maker of M\&M'S, the probability model for a bag from its Cleveland factory is:

Color	Blue	Orange	Green	Yellow	Red	Brown
Probability	0.207	0.205	0.198	0.135	0.131	0.124

(a) Explain why this is a valid probability model
The prob a bilites add ep
(b) Explain why events Red and Blue are mutually exclusive An mam cannot be booth red a blue.

For each of the following write the event using proper notation and find the probability:
(c) Find the probability that you don't get a blue M\&M.

(d) What's the probability that you get an orange or a brown M\&M?

$=P(o r)+P(\text { chare })^{x}$

For each of the following write the event using proper notation and find the probability:
(c) Find the probability that you don't get a blue M\&M.

 ${ }^{12} 07=$ 172
(d) What's the probability that you get an orange or a brown M\&M?

For each of the following write the event using proper notation and find the probability:
(c) Find the probability that you don't get a blue M\&M.

(d) What's the probability that you get an orange or a brown M\&M?
$P($ or or brown $)$
$=P(0 r)+P(b r)=.205+.124$
$=329$

Exit Ticket
page 318.... Check for Learning.
TURN IN
See your
test.

5.2.... 31, 33, 35, 37, 39, 60a and Study p.314-318

