What's To Come
ToDAY: The last section of Ch. 5
Tues. Review
Wed: Ch. 5 TeST
Have access to your AP
formula sheet

$$
5.3 \text { day } 2
$$

Use a tree diagram to model
a chance process involving a sequence of outcomes to calculate probabilities
when appropriate, use the multiplication rule for independent events to calculate probabilities.

If you take the last version, $P\left((B \mid A)=\frac{P(A \cap B)}{P(A)}\right.$ and re-arrange using a little algebra to solve for $P(A \cap B)$, you would get a new formula known as the General Multiplication Rule:

For any chance process, the probability that events A and B both occur can be found using the general multiplication rule:
$\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B} \mid \mathrm{A})$

This general rule says that for both of two events to occur, first one must occur. Then, given that the first event has occurred, the second must occur.

Example Hot coffee
Students who work at a local coffee shop recorded the drink orders of all the customers on a Saturday. They found that 64% of customers ordered a hot drink, and 80% of these customers added cream to their drink.
Find the probability that a randomly selected Saturday customer orders a hot drink and adds cream to the drink.
For any chance process, the probability that events A and B both occur can be found using the general multiplication rule: $P(A$ and $B)=P(A \cap B)=P(A) \cdot P(B \mid A)$

Example Hot coffee

Students who work at a local coffee shop recorded the -drink orders of all the customers on a Saturday. They found that 64% of customers ordered a hot drink, and 80% of these customers added cream to their drink
Find the probability that a randomly selected Saturday customer orders a hot drink and adds cream to the drink.

$$
P\left(\begin{array}{ll}
\text { hot } & \text { Adds } \\
\text { drink and } & \text { Cream }
\end{array}\right)
$$

$$
P(A \text { and } P=P(A) \otimes P(\beta \| A)
$$

$$
\begin{aligned}
=P\binom{\text { hot }}{\text { drink }} \cdot P\left(\begin{array}{l}
\text { adds } \\
\text { cream }
\end{array}\right. & \left.\begin{array}{l}
\text { hot } \\
\text { drink }
\end{array}\right)=
\end{aligned}=(.64)(80)
$$

II. Probability and Distributions

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B) \quad P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

$$
\begin{gathered}
\uparrow \\
\text { general } \\
\text { addition } \\
\text { rule }
\end{gathered}
$$

can generate
the general
multiplication rule

$$
P(A \cap B)=P(B) P(A \cap B)
$$

$$
\begin{aligned}
& \text { This formula can be ext tended to } \\
& 3 \text { or more events } \\
& \text { For any chance process, the probability that events } A \text { and } \\
& \text { be found using the general multiplication rule: } \\
& P(A \text { and } B \text { and } C) \quad P(A \text { and } B)=P(A \cap B)=P(A) \cdot P(B \mid A) \\
& =P(A \cap B \cap C) \\
& =P(A) \cdot P(B \mid A) \cdot P(C \mid A \cap B)
\end{aligned}
$$

The Game

The dealer holds five cards total: 2 aces and 3 Kings.
The player chooses their first card, and then chooses their second card (without replacement).

The player wins if they get a pair of Aces or a pair of Kings. Otherwise the dealer wins.
volunteers to
play me? play me?

Based on the whole class data, what is the probability of winning this game? \qquad $=46^{4}$ 46.

$$
\begin{aligned}
& \text { Big Ideas: } \text { General Mult. Rule } \\
& P(A \cap B)=P(A) \times P(B \mid A) \\
& * \text { if } A \text { and } B \text { are independent } \\
& P(B)=P(B \mid A) \text { so } \\
& P(A \cap B)=P(A) \times P(B) \\
& P(\text { at least } 1)=1-P(\text { none })
\end{aligned}
$$

Conditional Probability and Independence	
Bigideas: General Mult. Rule	label pro
$P(A \cap B)=P(A) \times P(B \mid A)$	along Paid
* if A and B are independent $P(B)=P(B \mid A)$	Find all \cap prob
$\begin{aligned} & P(A \cap B)=P(A) \times P(B) \\ & (\text { at least } 1)=1-P(\text { none }) \end{aligned}$	make sure they add to 1

It can be a struggle at times to
choose the correct strategy

Hint

Most conditional probability questions
can be solved using a tree diagram or a Two-way table

CYU: A compurer company makes desktop, laptop, and atabec compurers a f factories in two staues: California and CYU: A computer company makes desktop, laptop, and tablet computers at factories in two states: California and
Texas. The California factory produces 40% of the company's computers and the Texas factory makes the rest. Of the Texas. The California factory produces 40% of the company's computers and the Texas factory makes the rest. Of the
computers made in California, 25% are desktops, 30% are laptops, and the rest are tablets. Of those made in Texas, 10% computers made in California, 25% are desktops, 30% are laptops, and the rest are tablets. Of those made in Texas, 10%
are desktops, 20% are laptops, and the rest are tablets. All computers are first shipped to a distribution center in Missouri before being sent out to stores. Suppose we select a computer at random from the distribution center and observe where it was made and whether it is a desktop, laptop, or tablet.

1. Construct a tree diagram to model this chance proces

CYU: A computer company makes desktop, laptop, and tablet computers at factories in two states: California and Texas. The California factory produces 40% of the company's computers and the Texas factory makes the rest. Of the computers made in California, 25% are desktops, 30% are laptops, and the rest are tablets. Of those made in Texas, 10%
are desktops, 20% are laptops, and the rest are tablets. All computers are first shipped to a distribution center in Missouri are desktops, 20% are laptops, and the rest are tablets. All computers are first shipped to a distribution center in Missouri it was made and whether it is a desktop, laptop, or tablet.

1. Construct a tree diagram to model this chance process.

5.381, 83, 87, 89, 91, 93, 99, 103-106
and study pp. 338-347
including the Mammogram
Example on p. 342

