Pick up the Warm Up

(a) Imagine flipping a fair coin three times. Give a probability model for this chance process and be sure to justify why it is a valid model. [Hint: start by listing the sample space]

(b) Define event A as getting 2 or more heads, event B as getting no heads, and event C as getting at least one head. Find the probability of each of these events.
(c) Are any of these probabilities related?
(b) Define event A as getting 2 or more heads, event B as getting no heads, and event
C as getting at least one head. Find the probability of each of these events.

$$
\begin{aligned}
& P(A)=P(2 \text { or more heads })=\frac{3}{8}+\frac{1}{8}=\frac{3+1}{8}=4 / 8 \\
& P(B)=P(\text { no heads })=1 / 8 \\
& P(C)=P(\text { at least } 1 \text { head })=\frac{3+3+1}{8}=7 / 8
\end{aligned}
$$

(c) Are any of these probabilities related?

- The events No heads and at least I head are mutually exclusive

$$
\text { so... } P(B \text { and } C)=0
$$ (can't happen at the sane time)

- Thar are also complementary events so $P(B)=1-P(4)$

- Use a two-way table or Venn diagram to model a chance process and calculate probabilities involving two events.
- Apply the general addition rule to calculate probabilities.

$$
P(A \text { or } B)=P(A)+P(B)
$$

that's not it

Some people believe that the ability to taco tongue and evil eyebrow is something that you are born with.

Is this true? Are the two abilities somehow related?

Put a tally in One of the four cells

Yes Taco
Tongue
No Taco Tongue

Yes
No Evil Eyebrow
1111 Evil Eyebrow 1 1 111 5 1 1 11 (2)

$$
\begin{aligned}
& \text { Pick Up the Handout } \\
& \text { - do \#1 for now }
\end{aligned}
$$

Can You Taco Tongue and Evil Eyebrow?

5.2 Day 2

Some people believe that the ability to taco tongue and evil eyebrow is something that you are born with. Is this true? Are the two abilities somehow related?

1. Collect class data to fill in the following two-way table and Venn Diagram.

	Yes Evil Eyebrow	No Evil Eyebrow	Total
Yes Taco Tongue	4	5	9
No Taco Tongue	1	2	3
Total	5	7	12

2. Suppose that we randomly choose a student from class. Find the following probabilities.
$P($ Yes Taco Tongue $)=\frac{9}{12}$
$P($ No Taco Tongue $)=3 / R$
$P($ Yes Taco Tongue AND Yes Evil Eyebrow) $=4 / 12$
$P(Y e s$ Taco Tongue AND No Evil Eyebrow) $=5 / 12$
$P($ Yes Evil Eyebrow $)=5 / 12$
$P($ No Evil Eyebrow $)=7 / 12$
$P($ Yes Evil Eyebrow AND No Taco Tongue $)=1 / 12$
$P($ No Taco Tongue AND No Evil Eyebrow) $=2 / 12$

\#
3
Let's go back and add formal notation to our work.
"If you are YES Evil Eyebrow, please stand up" out loud then

"If you are NO Evil Eyebrow, please stand up"

"If you are YES Evil Eyebrow or NO Evil Eyebrow please stand up"

We could have simply added the counts from the first two groups.

There are two different uses of the word "OR" in everyday life.

When you are asked if you want "soup or salad," the waiter wants you to choose one or the other, but not both.

However, when you order coffee and are asked if you want "cream or sugar," it's OK to ask for one or the other or both.

> When you are asked if you want "soup or salad," the waiter wants you to choose one or the other, but not both.

However, when you order coffee and are asked if you want "cream or sugar," it's OK to ask for one or the other or both.

In mathematics and probability, "A or B" means one or the other or both.

Debrief \# 4

"If you are YES Taco Tongue, please stand up"
"If you are YES Evil Eyebrow, please stand up"
"If you are YES Taco Tongue OR YES Evil Eyebrow please stand up"

> Big problem. We can't simply add the counts from the first two goups. Why not?

Venn Diagrams and the General Addition Rule

Venn Diagrams and the General Addition Rule
TWO-WAY VENN
tables Diagram

Venn Diagrams and the General Addition Rule	
$\begin{array}{\|l} \hline T \\ A \\ A \\ A^{c} \end{array}$	VENN Diagram

Check for Understanding but using formal notation. What is the relationship between educational achievement and home ownership? A random sample of 500 U.S. adults was selected. Each member of the sample was identified as a high school graduate (or not) and as a homeowner (or not). The two-way table displays the data. Suppose we choose a member of the sample at random. Define events

$$
\text { G: person is a high school graduate } \quad \mathrm{H} \text { : person is a homeowner. }
$$

	High school graduate	Not a high school graduate
Homeowner	221	119
Not a homeowner	89	71

1. Explain in plain language what $P\left(\mathrm{G}^{\mathrm{c}}\right)$ means and find the probability.

Check for Understanding but using formal notation. What is the relationship between educational achievement and home ownership? A random sample of 500 U.S. adults was selected. Each member of the sample was identified as a high school graduate (or not) and as a homeowner (or not). The two-way table displays the data. Suppose we choose a member of the sample at random. Define events

G: person is a high school graduate $\quad \mathrm{H}$: person is a homeowner.

	High school graduate	Not a high school graduate
Homeowner	221	119
Not a homeowner	89	71

1. Explain in plain language what $P\left(G^{c}\right)$ means and find the probability.

The proboblity the person
is not a high school
student is 0.38

Check for Understanding but using formal notation. What is the relationship between educational achievement and home ownership? A random sample of 500 U.S. adults was selected. Each member of the sample was identified as a high school graduate (or not) and as a homeowner (or not). The two-way table displays the data. Suppose we choose a member of the sample at random. Define events

G: person is a high school graduate $\quad \mathrm{H}$: person is a homeowner.

	High school graduate	Not a high school graduate
Homeowner	221	119
Not a homeowner	89	71

1. Explain in plain language what $P\left(\mathrm{G}^{\mathrm{c}}\right)$ means and find the probability.

is not a high school
student is 0.38

| | High school graduate | Not a high school graduate |
| :--- | :---: | :---: | :--- |
| Homeowner | 221 | $119=340$ |
| Not a homeowner | $\frac{89}{310}$ | $\frac{71}{190}=160$ |
| | | 500 |

2. Explain why $P(\mathrm{G}$ or H$) \neq P(\mathrm{G})+P(\mathrm{H})$. Then find $P(\mathrm{G}$ or H$)$.
3. Make a Venn diagram to the right to display the sample space of this chance process.
4. Write the event "is not a high school graduate and is a homeowner" in symbolic form and find the probability.

	High school graduate	Not a high school graduate	
Homeowner	221	119	$=340$
Not a homeowner	$\frac{89}{310}$	$\frac{71}{190}$	$=160$
		500	

2. Explain why $P(\mathrm{G}$ or H$) \neq P(\mathrm{G})+P(\mathrm{H})$. Then find $P(\mathrm{G}$ or H$)$.

5, There are some people who graduated
and own a home so they were counted twice
3. Make a Venn diagram to the right to display the sample space of this chance process.
4. Write the event "is not a high school graduate and is a homeowner" in symbolic form and find the probability.

| | High school graduate | Not a high school graduate |
| :--- | :---: | :---: | :--- |
| Homeowner | 221 | $119=340$ |
| Not a homeowner | $\frac{89}{310}$ | $\frac{71}{190}=160$ |
| | | 500 |

2. Explain why $P(\mathrm{G}$ or H$) \neq P(\mathrm{G})+P(\mathrm{H})$. Then find $P(\mathrm{G}$ or H$)$.
$\begin{aligned} & \text { 5. There are some people who graduated } \\ & \text { and own a home so they }\end{aligned} \quad P(G$ or $H)=\frac{310}{500}+\frac{340}{500}-\frac{221}{500}$ were counted twice $\quad=\frac{429}{500}=.858$
3. Make a Venn diagram to the right to display the sample space of this chance process.

4. Write the event "is not a high school graduate and is a homeowner" in symbolic form and find the probability.

	High school graduate	Not a high school graduate	
Homeowner	221	119	$=340$
Not a homeowner	$\frac{89}{310}$	$\frac{71}{190}$	$=160$
		500	

2. Explain why $P(\mathrm{G}$ or H$) \neq P(\mathrm{G})+P(\mathrm{H})$. Then find $P(\mathrm{G}$ or H$)$.

There are some people who graduated $\quad P(G$ or $H)=\frac{310}{500}+\frac{340}{500}-\frac{221}{500}$
and own a home so they were counted twice? $\quad=\frac{429}{500}=.858$
3. Make a Venn diagram to the right to display the sample space of this chance process.

4. Write the event "is not a high school graduate and is a homeowner" in symbolic form and find the probability.

	High school graduate	Not a high school graduate	
Homeowner	221	119	$=340$
Not a homeowner	$\frac{89}{310}$	$\frac{71}{190}$	$=160$
		500	

2. Explain why $P(\mathrm{G}$ or H$) \neq P(\mathrm{G})+P(\mathrm{H})$. Then find $P(\mathrm{G}$ or H$)$.
3. There are some people who graduated $\quad P(G$ or $H)=\frac{310}{500}+\frac{340}{500}-\frac{221}{500}$
and own a home so they were counted twice $?$ $=\frac{429}{500}=.858$
4. Make a Venn diagram to the right to display the sample space of this chance process.

5. Write the event "is not a high school graduate and is a homeowner" in symbolic form and find the probability.

$$
P\left(G^{c} \text { and } H\right)=\frac{119}{500}=0.238
$$

Classwork - Part 2
How do we find probabilities
from a two-way table?

	Not a high		
	High school graduate	graduate school	Total
Homeowner	221	119	340
Not a homeowner	89	71	160
Total	310	190	500

Define event A as being a high school graduate. Define event B as being a homeowner. Suppose we choose a member of the sample at random. Find the probability that the member:
(a) is a high school graduate.

	Not a high							
	High school graduate	school graduate	Total			221	119	340
:---	:---:	:---:	:---:					
Homeowner	89	71	160					
Not a homeowner	310	190	500					
Total								

Define event A as being a high school graduate. Define event B as being a homeowner. Suppose we choose a member of the sample at random. Find the probability that the member:
$\quad \begin{aligned} & \text { (a) is a high school graduate. } \\ & \text { NOT Necessary since } \\ & \text { event A has been clearly de fined }\end{aligned}$
$\begin{aligned} & P(\text { high school grad })\end{aligned}=\frac{310}{500}$

	High school graduate	Not a high school graduate	Total	(b) is a high school graduate and owns a home.$P(A \text { and } B)=\frac{221}{500}=.442$
Homeowner	221	119	340	
Not a homeowner	89	71	160	
Total	310	190	500	
				(c) is a high school graduate or owns a home. $\begin{aligned} & P(A \text { or } B) \\ & =\frac{221+89+119}{500} \\ & =\frac{429}{500} \end{aligned}$

(d) Explain why $P(A$ or $B) \neq P(A)+P(B)$

$$
P(A \text { and } B)=\frac{221}{500} \quad P(A)+P(B)=\frac{310}{500}+\frac{340}{500}
$$

(d) Explain why $P(A$ or $B) \neq P(A)+P(B)$

> Because the outcomes
> of $P(A)+P(B)$ are
> double counted.

Venn Diagrams

and some notation

You can see why
$P(A)$ and $P\left(A^{c}\right)$ add up to 1

Complement Rule:

$$
\begin{aligned}
& P(A)+P\left(A^{\prime}\right)=1 \\
& P(A)=1-P\left(A^{\prime}\right) \\
& P\left(A^{\prime}\right)=1-P(A)
\end{aligned}
$$

Intersection

(football)

Union

HINT: To keep the symbols straight, remember

U for Union and
\cap for intersection.

Where are the best tacos?

A survey of all students at a large high school revealed that, in the last month, 38% of them had dined at Taco Bell, 16% had dined at Chipotle, and 9% had dined at both. Suppose we select a student at random. What's the probability that the student has dined at Taco Bell or Chipotle in the last month?
a)
b) Now create a Venn Diagram to display the sample space in a different way.

Where are the best tacos?

A survey of all students at a large high school revealed that, in the last month, 38% of them had dined at Taco Bell, 16% had dined at Chipotle, and 9% had dined at both. Suppose we select a student at random. What's the probability that the student has dined at Taco Bell or Chipotle in the last month?
a)
b) Now create a Venn Diagram to display the sample space in a different way.
3. Where are the best tacos?

A survey of all students at a large high school revealed that, in the last month, 38% of them had dined at Taco Bell, 16% had dined at Chipotle, and 9% had dined at both. Suppose we select a student at random. What's the probability that the student has dined at Taco Bell or Chipotle in

Addition

$$
\begin{aligned}
& \text { the last month? } \\
& \begin{aligned}
\text { eras } & =P(\text { Taco bell OR Chipotle } \\
\text { diction } & =P(\text { tace })+P(\text { chipotle })-P(\text { Taco and chipotle }) \\
\text { Rule } & =P \\
& =.3 \frac{5}{8}+.16-.09=.45
\end{aligned}
\end{aligned}
$$

Now create a Venn Diagram to display the sample space in a different way.

 Risk Payment football

Take Home LCQ - due no later than the start of class tomorrow.

5.2
.....41, 47, 49, 51, 53, 55-58 and study pp.318-325

