## After Test Assignment Due Monday packet

Name

These problems, as with previous "After Test" assignments, come from the May 2019 IB Math Studies exam, Paper 1 questions. (Did you know there are November IB exams?)

As you do these problems, refer back to your notes and formula sheet and possibly your notation theet.



M19/5

## M19/5/MATSD/SP1/ENG/TZ1/XX

2. The fastest recorded speeds of eight animals are shown in the following table.

| Animal        | Speed (km h <sup>-1</sup> ) |
|---------------|-----------------------------|
| Golden eagle  | 300                         |
| Swordfish     | 97                          |
| Hare          | 80                          |
| Lion          | 80                          |
| Horse         | 71                          |
| Zebra         | 64                          |
| Komodo dragon | 21                          |
| Tiger beetle  | 6                           |

|     |                                                | Tiger beetle       | 6                  |          |    |  |
|-----|------------------------------------------------|--------------------|--------------------|----------|----|--|
| (a) | State whether speed                            | is a continuous or | discrete variable. | <u>\</u> |    |  |
| (b) | Write down the median speed for these animals. |                    |                    |          |    |  |
| (c) | Write down the range of the animal speeds.     |                    |                    | S        | 90 |  |
| (d) | For these eight anim                           | als                |                    |          |    |  |

(ii) write down the standard deviation.

find the mean speed;

[3]



7. (a) Place the numbers  $2\pi$ , -5,  $3^{-1}$  and  $2^{\frac{3}{2}}$  in the correct position on the Venn diagram. [4]



(b) In the table indicate which two of the given statements are true by placing a tick (√) in the right hand column.

[2]



| Statement                                  | True |
|--------------------------------------------|------|
| $\mathbb{Z} \subset \mathbb{Q}$            |      |
| $\mathbb{N} \subset \mathbb{Q}'$           |      |
| $\mathbb{N} \cap \mathbb{Z} = \mathbb{N}$  |      |
| $\mathbb{Q} \cup \mathbb{R} = \mathbb{Z}'$ |      |



5. A florist sells bouquets of roses. The florist recorded, in **Table 1**, the number of roses in each bouquet sold to customers.

Table 1

| Number of roses in a bouquet (n) | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9   | 10 | 11 | 12 |
|----------------------------------|---|---|---|---|---|---|----|-----|----|----|----|
| Number of customers (f)          | 9 | 2 | 4 | 5 | 7 | 3 | 10 | 2 - | 3  | 1  | 4  |

The roses can be arranged into bouquets of size small, medium or large. The data from **Table 1** has been organized into a cumulative frequency table, **Table 2**.

Table 2

| Bouquet size | Number of roses (n) | Frequency (f) | Cumulative frequency |
|--------------|---------------------|---------------|----------------------|
| small        | 2 ≤ n ≤ 4           | 15            |                      |
| medium       | $5 \le n \le 8$     | 25            | ā                    |
| large        | 9 ≤ <i>n</i> ≤ 12   |               |                      |

(a) Complete the cumulative frequency table.

[2]

(b) Write down the probability that a bouquet of roses sold is **not** small.

[2]

A customer buys a large bouquet.

(c) Find the probability that there are 12 roses in this bouquet.

[2]

**10.** Three airport runways intersect to form a triangle, ABC. The length of AB is 3.1 km, AC is 2.6 km, and BC is 2.4 km.



diagram not to scale



A company is hired to cut the grass that grows in triangle ABC, but they need to know the area.

(a) Find the size, in degrees, of angle  $B\hat{A}C$ .

[3]

(b) Find the area, in  $\mathrm{km}^2$ , of triangle ABC.

[3]

Working:

Answers:

- (a) .....

The graph of a quadratic function is shown. 13.



Find the equation of the quadratic function in the form  $y = ax^2 + bx + 30$ . (a)

[4]

Write down the equation of the axis of symmetry. (b)

[2]

| W | 0 | rl | Κi | n | g | : |  |
|---|---|----|----|---|---|---|--|
|   |   |    |    |   |   |   |  |

Answers: