6.3 Day 2 (more on binomial distributions)

> \checkmark CALCULATE the mean and standard deviation of a binomial random variable. INTERPRET these values.

\checkmark When appropriate, USE the Normal approximation to the binomial distribution to CALCULATE probabilities.*
pick up the handout and do \# I

Lesson 6.3: Day 2: Will the SHS girls soccer team win?

When the time runs out in a soccer game and the score is tied, the game will go to a shootout. Each team gets to choose 5 players to kick penalty kicks. Whichever team makes the most penalty kicks wins. Suppose the IRISH soccer team makes 60% of their penalty kicks, what are the chances they will win the game?

1. Is this a binomial setting? Explain.

When the time runs out in a soccer game and the score is tied, the game will go to a shootout. Each team gets to choose 5 players to kick penalty kicks. Whichever team makes the most penalty kicks wins. Suppose the IRISH soccer team makes 60% of their penalty kicks, what are the chances they will win the game?

1. Is this a binomial setting? Explain.

$$
p=0.6
$$

Success:
Make penalty

for all failure

$$
n=5
$$

Kicks

2. Fill in the table below showing the probability of making X penalty kicks. Mr. C may show you a shortcut.

Goals (X)	0	1	2	3	4	5
Probability						

$P(0$ susses $)$

$$
{ }_{5}^{P(3)}\left(C_{3}(.1)^{3}(\cdot n)^{0}\right.
$$

Enter values of X in L_{1}

$$
\text { can use binompdf }(\quad) \rightarrow L_{2}
$$

2. Fill in the table below showing the probability of making X penalty kicks. Mr. C may show you a shortcut.

Goals (X)	0	1	2	3	4	5
Probability						

 $B(5,0.6)$
2. Fill in the table below showing the probability of making X penalty kicks. Mr. C may show you a shortcut.

Goals (X)	0	1	2	3	4	5
Probability	.01024	.0768	.2304	.3456	.2592	.07776

3. Find and interpret the mean of the probability distribution. Show your work.
4. Find and interpret the standard deviation of the distribution.
5. Find and interpret the mean of the probability distribution. Show your work.

6. Find and interpret the standard deviation of the distribution.
7. Find and interpret the mean of the probability distribution. Show your work.

8. Find and interpret the standard deviation of the distribution.

$$
1-\operatorname{-ararstat} L_{1}, L_{2}
$$

3. Find and interpret the mean of the probability distribution. Show your work.

4. Find and interpret the standard deviation of the distribution.
5. Find and interpret the mean of the probability distribution. Show your work.

$\mu=O(.01024)+((0168)+. \infty=3$
After many shootouts we expect After many shootouts, we expect
average number of goals made to be 3 out of the 5 attempted
6. Find and interpret the standard deviation of the distribution.
7. Find and interpret the mean of the probability distribution. Show your work.

For rand var. disturbs
$\mu=O(.01024)+(.0768)+$ $\mu=n P$
After many shootouts, we expect the
average number of goals made to be 3 out of the 5 attempted.
4. Find and interpret the standard deviation of the distribution.
$\sum\left(x_{i}-\mu\right)^{2} \cdot p(x)$

$$
\sigma=(0-3)^{2}(0.1024)+(1-3)^{2}(.0768)+\ldots=1.09
$$

3. Find and interpret the mean of the probability distribution. Show your work.
for rand var. disturb

4. Find and interpret the standard deviation of the distribution.

$$
\begin{aligned}
& \sum\left(x_{i}-\mu\right)^{2} \cdot p(x) \\
& \quad \sigma=(0-3)^{2}(01024)+()^{2}(\quad+\ldots=1.09
\end{aligned}
$$

We expect the number of goals made in a shootout to typically vary by 1.09 goals from the mean of 3 out of 5 goals.

3. Find and interpret the mean of the probability distribution. Show your work. $\begin{aligned} & \text { Porrandvar } \\ & \text { distrab }\end{aligned} \mu=0(.01024)+((0768)+\ldots=0 \quad \mu=n P$ distr After many shootouts we expect the
4. Find and interpret the standard deviation of the distribution.
$\sum\left(x_{i}-\mu\right)^{2} \cdot p(x)$

$$
\sigma=(0-3)^{2}(01024)+()^{2}()+\ldots=1009
$$

We expect the number of goals made in a shootout to typically vary by 1.09 goals from the mean of 3 out of 5 goals.

II. Probability and Distributions

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B) \quad P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Probability Distribution	Mean	Standard Deviation
Discrete random variable, X	$\mu_{x}=E(X)=\sum x_{i} \cdot P\left(x_{i}\right)$	$\sigma_{x}=\sqrt{\sum\left(x_{i}-\mu_{X}\right)^{2} \cdot P\left(x_{t}\right)}$
If X has a binomial distribution with		
parameters n and p, then:		
$\quad P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}$	$\mu_{x}=n p$	$\sigma_{x}=\sqrt{n p(1-p)}$
\quad where $x=0,1,2,3, \ldots, n$		

5. What is the probability that the team scores at least one goal?
6. If the other team is expected to make 3 goals, what is the probability that the SHS girls' team wins?
7. What is the probability that the team scores at least one goal?

$$
\begin{aligned}
P(\text { at least 1 }) & =1-P(\text { none }) \\
& =1-.01024=.98976
\end{aligned}
$$

6. If the other team is expected to make 3 goals, what is the probability that the SHS girls' team wins?

7. Use technology to make a histogram of the probability distribution and then Describe its shape.

 Xlist:L1 Frea:L2 Color: BLUE

3

- Probability
\rightarrow Binomial Distrib
http://bcs.whfreeman.com/webpub/statistics/spa3e/analyze_data/prob.html

Describing Binomial Distributions
Important ideas:

Describing Binomial Distributions
Important ideas:
Shape
Center
Variability

Describing Binomial Distributions
Important ideas:
Shape: Make a histogram

Center: $\mu=n p$
Variability $\cdot \sigma=\sqrt{n p(1-P)}$

POP QUIZ GUESSING: Mr. Miller's class is very difficult. It's so hard that when he gave a pop quiz recently, the students just guessed on every question! Each student in the class guesses an answer from A through E on each of the 10 multiple-choice questions. Hannah is one of the students in this class. Let $\mathrm{Y}=$ the number of questions that Hannah answers correctly.

Note: B: Success (correct answer) Failure (Not correct)
I: Each shot is independent.
N : Set \# of trials, $n=10$
S: Same probability, $p=0.2$
THEREFORE: \qquad

1. Use technology to make a histogram of the probability distribution of Y. Describe its shape.

POP QUIZ QUESSING: Mr. Miller's class is very difficult. It's so hard that when he gave a pop quiz recently, the students just guessed on every question! Each student in the class guesses an answer from A through E on each of the 10 multiple-choice questions. Hannah is one of the students in this class. Let $Y=$ the number of questions that Hannah answers correctly.

Note: B: Success (correct answer) Failure (Not correct)
I: Each shot is independent.
N : Set \# of trials, $n=10$
S: Same probability, $p=0.2$
THEREFORE: \square

1. Use technology to make a histogram of the probability distribution of Y. Describe its shape.
2. Use technology to make a histogram of the probability distribution of Y. Describe its shape.

 correct
3. Calculate the mean of Y and then complete the interpretation.

After \qquad quizzes, we expect the average number of correct \qquad
is \qquad questions.
3. Calculate the standard deviation of Y and then complete the interpretation.

The number correct on a quiz of 10 questions \qquad varies by \qquad from the mean of 2 questions.
2. Calculate the mean of Y and then complete the interpretation. $\mu=n P$

After \qquad quizzes, we expect the average number of correct \qquad is \qquad questions.
3. Calculate the standard deviation of Y and then complete the interpretation.

$$
\sigma=\sqrt{n p(1-p)}
$$

The number correct on a quiz of 10 questions \qquad varies by \qquad from the mean of 2 questions.
2. Calculate the mean of Y and then complete the interpretation. $\mu=n P=10 \times 0.2=2$

After many many quizzes, we expect the average number of correct out of 10 is \mathcal{Z} questions.
3. Calculate the standard deviation of Y and then complete the interpretation.
$\sigma=\sqrt{n p(1-p)}=\sqrt{10(.2)(.8)}=1.26$
The number correct on a quiz of 10 questions typically/varies by \qquad from the mean of 2 questions.

Binomial Distributions in Statistical Sampling

Almost all real-world sampling, such as taking an SRS from a population of interest, is done without replacement.

Sampling without replacement leads to a violation of the Independent condition of the binomial setting.

But, when the population is much larger than the sample, a count of successes in an SRS of size n has an approximately binomial distribution.

In practice, the binomial distribution gives a good approximation to situations that don't have replacement (non-independence) as long as we sample less than 10% of the population. This is called the 10% condition.

> When taking a random sample of size n from a population of size N, we can use a binomial distribution to model the count of successes in the sample as long as $n<0.10 \mathrm{~N}$. We refer to this as the $\mathbf{1 0 \%}$ condition.

PEW RESEARCH CENTER: A recent report from the Pew Research Center estimates that 71% of teenagers aged 13-17 use Snapchat. Assume this claim is true. Suppose that some researchers are going to contact a random sample of 300 teenagers to find out if they use Snapchat. Let $X=$ the number of teens in a random sample of size 300 who use Snapchat.
(a) Explain why X can be modeled by a binomial distribution even though the sample was selected without replacement.
(b) Use a binomial distribution to estimate the probability that 200 or more teens in the sample use Snapchat.
(a) Explain why X can be modeled by a binomial distribution even though the sample was selected without replacement.
300 is definitely less than $10^{\prime \prime}$ of all teenagers aged 13-17
(b) Use a binomial distribution to estimate the probability that 200 or more teens in the sample use

$$
\begin{aligned}
& P(x \geq 200) \\
= & 1-(x \leq 199) \\
= & 1-\text { binom cdt }[\text { trials: } 300, p: 0.71, x \text { value: } 199] \\
= & 1-0.044 \\
= & 0.956
\end{aligned}
$$

6.3....91, 93, 95, 99, 101, 105 and study pp. 412-421

