Warm Up
Convert each term of the functions below to the form
$a x^{n}$ where $n \in Z_{T}$

$$
f(x)=\frac{10}{x}+\frac{5}{x^{2}}=
$$

TURN Your Draft \# / Hard Copy to bask e \longrightarrow

$$
\begin{aligned}
& f(x)= \frac{10}{x}+\frac{5}{x^{2}}= \\
& 10 x^{-1}+5 x^{-2} \\
& 10 x
\end{aligned}
$$

$$
\begin{aligned}
g(x) & =\frac{3 x^{2}-6 x+x^{3}}{x^{3}}=\quad a x^{n} \\
& =\frac{3 x^{2}}{x^{3}}-\frac{6 x}{x^{3}}+\frac{x^{3}}{x^{3} 1} \\
& =\frac{3}{x}-\frac{6}{x^{2}}+1 \\
& =3 x^{-1}-6 x^{-2}+1
\end{aligned}
$$

$$
g(x)=\frac{3 x^{2}-6 x+x^{3}}{x^{3}}=
$$

Questions on HW
\bullet
(1a) $y=x^{2}$

$$
\begin{aligned}
& \text { (1a) } y=x^{2} \\
& m=\frac{(3+h)^{2}-9}{3+h-3} \\
&=\frac{9+6 h+h^{2}-9}{h} \\
&=\frac{6 h+h^{2}}{h}=\frac{k h\left(6+h,(3+h)^{2}\right)}{k+h}=6+h
\end{aligned}
$$

(1e) $y=2 x-x^{2}$ at $x=3$

$$
-3-4 h-h^{2}
$$

(1e) $y=2 x-x^{2}$ at $x=3$
Gradient =

$$
\begin{aligned}
& \frac{-3-4 h-h^{2}--3}{3+h-3} \\
& =\frac{-4 h-h^{2}}{h}=\frac{k(-4-h)}{k} \\
& =-4-h
\end{aligned}
$$

$$
-3-4 h-h^{2}
$$

$$
\begin{aligned}
& \text { (1e) } y=\underset{\substack{\pi \\
3 \text { th }}}{2 x+x^{2}} \text { 3th } \\
& 2(3+h)-(3+h)^{2} \\
& 6+2 h-(3+h)(3+h) \\
& 6+2 h-\left[9+6 h+h^{2}\right] \\
& =6+2 h-9-6 h-h^{2} \\
& =-3-4 h-h^{2}
\end{aligned}
$$

Last class, we found the gradient of curves at a specific point
a) drawing a tangent and estimating
(b) with GDC

Basic Differential Calculus
Calculate the derivative at a specific point.

1. Graph the function, $f(x)$, and obtain an appropriate window.
2. Select Ind then TRACE, the select $\frac{d y}{d x}$,
3. enter the appropriate x-value, then ENTER

Draw Tangent Line (\& calculate it's equation)

1. Graph the function, $f(x)$, and obtain an appropriate window.
2. Select Ind then DRAW, then TANGENT,
3. enter the appropriate x-value, then ENTER

$$
f(x)=a x^{n}+b x^{n-1} \ldots
$$

Pick Up

$$
\text { Notes } 2.0
$$

What we are about to look at will require you to focus on on the gradients of all of the tangents of a function

(A) Wouldn't it be cool if there was a magic function that could quickly give you the gradients at any x-value you want, for any function

That function is called The Gradient fowerion
or more commonly called THE Derivative function

Gradient is a rate of change

The Derivative is a function that that you can use to generate the gradient at any x-value.
other symbols for it:

$$
\begin{aligned}
& f^{\prime}(x) \text { or } \frac{d y}{d x} \\
& f(x)=x^{2} \\
& f^{\prime}(x)=2 x
\end{aligned}
$$

(C) The gradient function (a.k.a derivative function) is created from the original function, $f(x)$.

An example: $f(x)=x^{2}$
its derivative, $f^{\prime \prime}(x)$, is

Differentiation is the process of finding the derivative of a function

Before we look at

- some patterns, lets
find the gradient one more time with our GDC
(D) Find the instaneous rate of change at $\mathrm{x}=1$ second

First estimate visually

$$
f(x)=2 \sqrt{x}
$$

\checkmark Graph (zoom 6)
\checkmark and Talc $\frac{d y}{d x}$
/ $\mathrm{x}=1$ (for example)
enter
it turns out the derivative function is

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{\sqrt{x}} \\
& f^{\prime}(1)=\frac{1}{\sqrt{1}}
\end{aligned}
$$

E See if you can see a connection between these two graphs?

Simple Patterns of

for functions in the form $y=a x^{n} \quad$ where $n \in Z_{\uparrow}$ integers

$f(x)$	$f^{\prime}(x)$
x^{2}	$2 x$
x^{3}	$3 x^{2}$
x^{4}	$4 x^{3}$
x^{5}	$5 x^{4}$
x^{7}	$7 x^{6}$

(7) ${ }^{\text {tp: } / / w w w . k h a n a c a d e m y . o r g / m a t h / c a l c u l u s / d i f f e r e n t i a l-c a l c u l u s / e / d e r i v a t i v e _i n t u i t i o n ~}$

$$
\begin{array}{lc}
\left.\begin{array}{lc}
\hline f(x) & f^{\prime}(x) \\
\hline 7 x^{2} & 7 \cdot(2 x)
\end{array}\right)=14 x \\
\left.-5 x^{3}\right) & -5\left(3 x^{2}\right)=-15 x^{2} \\
4 x^{10} & 40 x^{9} \\
& \text { If } y=x^{n} \text { then } \frac{d y}{d x}=n x^{n-1} . \\
& y=a x^{n} \quad \frac{d y}{d x}=a n x^{n-1}
\end{array}
$$

$f(x)$	$f^{\prime}(x)$
$x^{4}+2 x^{2}$	$4 x^{3}+4 x$
$x^{5}-3 x^{2}$	$5 x^{4}-6 x$
$\frac{2}{x}=2 x^{-1}$	$\frac{d y}{d x}=2 \cdot-1 x^{-2}=-2 x^{-2}=-\frac{2}{x^{2}}$
$\frac{3}{x^{2}}=3 x^{-2}$	$\frac{d y}{d x}=3 \cdot-2 x^{-3}=-6 x^{-3}$ or $\left[-\frac{6}{x^{3}}\right.$

Function	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$
a constant	a	0
x^{n}	x^{n}	$n x^{n-1}$
a constant multiple of x^{n}	$a x^{n}$	$a n x^{n-1}$
multiple terms	$u(x)+v(x)$	$u^{\prime}(x)+v^{\prime}(x)$

\square

EXERCISE ROC
1 Find the gradient function $\frac{d y}{d x}$ for:
a $y=x^{6}$
b $y=\frac{1}{x^{5}}$
c $y=x^{9}$
d $y=\frac{1}{x^{7}}$

$$
\frac{d y}{d x}=6 x^{5}
$$

$$
y=x^{-5}
$$

$$
y=x^{-7}
$$

$$
\frac{d y}{d x}=9 x^{8}
$$

$$
\frac{d y}{d x}=-7 x^{-8}
$$

$$
\text { or }-\frac{5}{x^{6}}
$$

$$
\text { or }-\frac{7}{x^{8}}
$$

2 For $f(x)=x^{5}$, find:
a $f(2)$
b $f^{\prime}(2)$
c $f(-1)$
d $f^{\prime}(-1)$
$f(2)$

$=(-1)^{5}$
$=2^{5}$

$$
=5(-1)^{4}
$$

$=32$

$$
\therefore f^{\prime}(2)=5(2)^{4}
$$

$$
=-1
$$

$$
=5
$$

3 Consider $f(x)=\frac{1}{x^{4}}$.
a Find $f^{\prime}(x)$.
b Find and interpret $f^{\prime}(1)$.

$$
f(x)=x^{-4}
$$

$$
f^{\prime}(1)=-\frac{4}{(1)^{5}}=-4
$$

$$
f^{\prime}(x)=-4 x^{-5}
$$

$$
=\frac{-4}{x^{5}}
$$

-4 is the gradient of the tangent at $x=1$

4 The graph of $f(x)=x^{3}$ is shown alongside, and its tangent at the point $(-1,-1)$.
a Use the graph to find the gradient of the tangent.
b Check your answer by finding $f^{\prime}(-1)$.

$$
\frac{3}{1}=\frac{3}{3}
$$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2} \\
& f^{\prime}(1)=3(-1)^{2}=3
\end{aligned}
$$

Brain Break

Find $f^{\prime}(x)$ for............

$$
\begin{aligned}
& f(x)=5 x^{3}+6 x^{2}-3 x+2 \\
& f^{\prime}(x)=5\left(3 x^{2}\right)+6(2 x)-3(1)+0 \\
& f^{\prime}(x)=15 x^{2}+12 x-3
\end{aligned}
$$

Papa Bear

$$
\begin{aligned}
& f(x)=7 x-\frac{4}{x}+\frac{3}{x^{3}} \quad \text { First } \\
& =7 x-4 x^{-1}+3 x^{-3} \text { YeW } \\
& f^{\prime}(x)=7(1)-4\left(-1 x^{-2}\right)+3\left(-3 x^{-4}\right) \\
& f^{\prime}(x)=7+4 x^{-2}-9 x^{-4} \\
& \text { Or } f^{\prime}(x)=7+\frac{4}{x^{2}}-\frac{9}{x^{4}}
\end{aligned}
$$

$$
\begin{aligned}
f(x)=\frac{x^{2}+4 x-5}{x} \quad f(x) & =\frac{x^{2}}{x}+\frac{4 x}{x}-\frac{5}{x} \\
f(x) & =x+4-5 x^{-1} \\
f^{\prime}(x) & =1+0+5 x^{-2} \\
f^{\prime}(x) & =1+\frac{5}{x^{2}}
\end{aligned}
$$

Assignment
p.573. Calculus packet

1aceghj, 2, Lace, 7, 8
p. 563

1

Schedule

Wed -brief intro to Talc -Prepare for Final or Look at Mock 1

Thur CALC

Fri CALC

Mon Call
Tues CALC + QUIZ
Wed Paper 2/ Final
Thur - Go over paper 2

- is Test info or Final

Part 1: Estimating Slopes of Tangent Lines from a Graph

What is $f^{\prime}(x)$ at $x=-2$?
What is $f^{\prime}(x)$ at $x=-1$?
What is $\mathrm{f}^{\prime}(\mathrm{x})$ at $\mathrm{x}=0$?
What is $\mathrm{f}^{\prime}(\mathrm{x})$ at $\mathrm{x}=1$?
What is $\mathrm{f}^{\prime}(\mathrm{x})$ at $\mathrm{x}=2$?

We can take all the different values of the derivative at different points and make them into a table or a graph. For example:

\mathbf{x}	$\mathbf{f}^{\prime}(\mathbf{x})$
-2	
-1	
0	
1	
2	

Remember that the table and graph for $\mathrm{f}(\mathrm{x})$ and $\mathrm{f}^{\prime}(\mathrm{x})$ are completely different!

Derivatives, Numerically and Physically

Part 1: Average Speed vs Instantaneous Speed

(1) If I drive to New York City (about 180 miles) in 3 hours, what was my average speed?
(2) I go driving for three hours. For the first 2 hours, I drive at a speed of 50 mph . For the last hour, I drive at 80 mph .
-What was my average speed?
-What was my instantaneous speed during each part of the trip?
(3) What kind of speed does your car's speedometer read?

What kind of speed does Calculus enable us to find?
(4) On a graph, average speed is the \qquad of a \qquad line.
On a graph, intantaneous speed is the \qquad of a \qquad line.

Part 2: Falling Objects

The following equation tells you where a falling object that was dropped from 100 meters will be after x seconds. This equation only works if you use meters. (In feet, we would use -16 instead of -5 for the first coefficient. Ask me if you're curious.)

$$
y=-5 x^{2}+100
$$

(1) On a graph of distance and time, the speed is given by
\qquad (or the \qquad !).
(2) Use the graph to estimate the average speed between when the object falls and when it hits the ground.
(3) Use the graph to estimate the instantaneous speed at

0 seconds

1 second
2 seconds
Remember that the graph has units (and intervals of 10 on the y-axis)! Find a slope with units.

Before we proceed we need to review some index (exponent) facts

Function	Can be written as:
\sqrt{x}	$x^{\frac{1}{2}}$
$\sqrt[3]{x}$	$x^{\frac{1}{3}}$
$\frac{1}{x}$	x^{-1}
$\frac{1}{\sqrt{x}}$	$x^{-\frac{1}{2}}$

$\mathrm{f}(\mathrm{x})$
$\mathrm{f}^{\prime}(\mathrm{x})$

