(1) Discuss HW see your LCQ
(2) Warm up
(3) Information about Test * (4) Work on study questens.

(a) Show that $4 x^{2}+6 x y=300$.

$$
\begin{equation*}
4 x^{2}+6 x y=300 \Rightarrow 6 x y=300-4 x^{2} \tag{2}
\end{equation*}
$$

(b) Find an expression for y in terms of x.

$$
\begin{equation*}
y=\frac{300-4 x^{2}}{6 x} \tag{2}
\end{equation*}
$$

(c) Hence show that the volume V of the box is given by $V=100 x-\frac{4}{3} x^{3}$.

$$
\text { volume }=(2 x)(x) y \quad y=\left(\frac{300-4 x^{2}}{6 x}\right)
$$

$$
=\left(\frac{e}{}=(2 x)(x)\left(\frac{30-4 x^{2}}{3}\right)\right.
$$

$\chi\left(\frac{300}{3}\right)$ -

(d) Find $\frac{\mathrm{d} V}{\mathrm{~d} x}$. $=100-4 x^{2}$

$$
\frac{d V}{d x}=100-4 x^{2}
$$

(e) - (i) Hence find the value of x and of y required to make the volume of the box a maximum.
(ii) Calculate the maximum volume.
maximum Volume ocurrs when tangent is flat
(gradient $=0$)
Set $\frac{d V}{d x}$ equal to 0
$100-4 x^{2}=0$

$$
4 x^{2}=100
$$

$$
x^{2}= \pm 5
$$

ignore
negative dimension

$$
\begin{aligned}
& x=5 \\
& \text { is the optimum } \\
& \text { dimension }
\end{aligned}
$$

(e) - (i) Hence find the value of x and of y required to make the volume of the box a maximum.
(ii) Calculate the maximum volume.
b maximum Volume ocurrs when
tangent is flat (gradient $=0$)

Set $\frac{d V}{d x}$ equal to 0

$$
\begin{array}{rlrl}
100-4 x^{2}=0 & \text { max Volume } \\
4 x^{2} & =100 & V & =100 x-\frac{4}{3} x^{3} \\
x^{2} & = \pm 5 & & =100(5)-\frac{4}{3}(5)^{3} \\
\text { ignore } \\
\text { negative } \\
\text { dimension } & & =333 \mathrm{~cm}^{3} \\
x=5 & & & \\
\text { cm volume } & =2 x^{2} y \\
333 & =2(5)^{2} y \\
y & =6.66 \mathrm{~cm}
\end{array}
$$

(a) Find $C(x)$.
(b) Show that the cost per person is a minimum when 10 people are invited to the party.
(c) Calculate the minimum cost per person.
(2)
(Total 7 marks)
(a) $C^{\prime}(x)=1-100 x^{-2}=1-\frac{100}{x^{2}}$
(b) To find minimum (whore tangent is) set $C^{\prime}(x)=0$ and solve

$$
1-\frac{100}{x^{2}}=0 \quad \text { multiply } b_{1} x^{2}
$$

$$
1-\frac{100}{x^{2}}=0
$$

(b) To find minimum (whore tangent is) set $C^{\prime}(x)=0$ and solve

$$
\begin{aligned}
& 1-\frac{100}{x^{2}}=0 \quad \text { multiply by } x^{2} \\
& x^{2}-100=0 \\
& x^{2}=100
\end{aligned}
$$

$x= \pm 10$ ignore negative
so, to people would give the minimum cost
(c) Minimum Cost $=C(18)=x+\frac{100}{x}$

$$
=10+\frac{100}{10}=20
$$

So the minimum cost per person is \$20 (which occurs when 10 people are invited)
p582 Review Set 20 A
(1)

a) $\frac{\Delta y}{\Delta x}=\frac{7000-6750}{50-40}$

$$
\pm 25 \text { televisions/month }
$$

b) 0 to 50

$$
\begin{aligned}
\frac{\Delta y}{\Delta x} & =\frac{7000-0}{50-0} \\
& =140 \mathrm{TV} \text { / month }
\end{aligned}
$$

c) $\frac{\Delta y}{\Delta x} \div \frac{5000-1900}{33-20} \doteqdot 239 \mathrm{Trs} / \mathrm{mo}$.
(2) a) $7 x^{3}$

$$
f^{\prime}(x)=21 x^{2}
$$

b) $x^{2}-x^{3}$
$f^{\prime}(x)=2 x-3 x^{2}$
c) $(2 x-3)^{2}=(2 x-3)(2 x-3)$

$$
\begin{aligned}
& =4 x^{2}-12 x+9 \\
f^{\prime}(x) & =8 x-12
\end{aligned}
$$

(a) $f^{\prime}(x)=4 x^{3}-3$ $f^{\prime}(2)=4(2)^{3}-3=29$
(c) $f^{\prime}(0)=4(0)^{3}-3=-3$

$$
\begin{aligned}
& \text { (4) } \begin{array}{r}
y=-2 x^{2} \\
\text { at } x=1
\end{array} \\
& \begin{aligned}
f^{\prime}(x)= & -4 x \\
f^{\prime}(1)= & -4(1) \\
= & =-4 \\
& \tau_{\text {gradient }}\left(1, r^{-2}\right)
\end{aligned} \\
& \begin{aligned}
& \frac{4 a t i o n}{y-2}=-4(x-1) \\
& \text { or } \\
& y=-4 x+2
\end{aligned}
\end{aligned}
$$

(5) $f(x)=-2 x^{2}+5 x+3$

(a) Arg rate of change
$\frac{\Delta y}{\Delta x}=\frac{5-9}{2-4}=\frac{14}{-2}-7$
(b) insiantenears uate $f^{\prime}(x)=-4 x+5 \quad f^{\prime}(x)=-4(2)+5=-3$

(7)

Find where tangent les gradient $=4$
(8) $y=a x^{3}-3 x+3$

$$
f^{\prime}(x)=3 a x^{2}-3
$$

when $x=2$

$$
f^{\prime}(x)=21
$$

$$
\begin{aligned}
f^{\prime}(x) & =-2 x+8 \\
-4 & =-2 x+8 \\
2 x & =4 \\
x & =2
\end{aligned}
$$

(8) $y=a-3 x+3 \quad f^{\prime}(x)=3 a x^{2}-3$

$$
\begin{gathered}
21=3 a x^{2}-3 \\
21=3 a(2)^{2}-3 \\
24=12 a \\
a=2
\end{gathered}
$$

$$
\mathbf{d}
$$

The letters A to E are placed at particular points on the curve $y=f(x)$

(a) What is the gradient of the curve $y=f(x)$ at the point marked C?
(b) In passing from point B , through point C , to point D what is happening to $\frac{\mathrm{d} y}{\mathrm{~d} x}$? Is it decreasing or increasing?

\checkmark Calculator skills: On typical or non-typical functions.... use GDC to:
 - Caclulate the gradient at a given location
 - Calculate the equation of a tangent line at a given location

(3)

$$
\begin{aligned}
& f(x)=-x^{2}+2^{x}-\sqrt{x} \\
& f^{\prime}(3)=-.743
\end{aligned}
$$

The Quiz on Introductory Calculus will be Monday

List of Quiz Items and Summary sheet is available

NOTATION
$f(x)$
$f^{\prime}(x)$

$$
5 x^{2}-6 x+1
$$

$$
\frac{\text { In-class }}{\begin{array}{c}
\text { You will turn -in) } \\
\text { Today }
\end{array}} \quad \Leftrightarrow \begin{aligned}
& \text { Practice } \\
& \text { (but stretch us) }
\end{aligned}
$$

At home \rightarrow Study Problems from textbook [solutions posted]

- Study Problems
$\rightarrow 1-6$

$$
7,8<2 \sum_{\text {nice challenge questions }}^{\text {for those going for a }} 7^{\prime \prime}
$$

I'll be posting solutions
 (together)

Unit 3 Practice - Introduction to Differential Calculus

 NameIB Math Studies $f(x)=\frac{48}{x}+3 x^{2}-58$

1. Consider the function $f(x)=\frac{48}{x}+k x^{2}-58$, where $x>0$ and k is constant.
 The graph of the function passes through the point with coordinates $(4,2)$.
a. Find the value of k.

$$
\begin{equation*}
2=12+16 k-58 \tag{2}
\end{equation*}
$$

b. Using your value of k, find $f^{\prime}(x)$.
$\rightarrow f(x)=48 x^{-1}+3 x^{2}-58 \rightarrow$

$$
\begin{aligned}
f^{\prime}(x) & =-48 x^{-2}+6 \\
& =-\frac{48}{x^{2}}+6 x
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{48}{x^{2}}+6 x=0 \\
& -48+6 x^{3}=0
\end{aligned}
$$

d. Write down the two values of x which satisfy $f(x)=0$.

$$
6 x^{3}=48
$$

$$
\begin{array}{r}
6 x \tag{2}\\
3-48
\end{array}
$$

x-intercepts are $x=3.90$ and $x=.861$
e. Sketch the graph of $y=f(x)$ for $0 \leq x \leq 6$ and $-30 \leq y \leq 60$.
e. Sketch the graph of $y=f(x)$ for $0 \leq x \leq 6$ and $-30 \leq y \leq 60$.

2. Consider the function $g(x)=x^{3} \neq k x^{2}-15 x+5$
a. Find $g^{\prime}(x)$.

The tangent to the graph of $y=g(x)$ at $x=2$ is parallel to the line $y=21 x+7$.
b. i. Show that $k=6$.
ii. Find the equation of the tangent to the graph of $y=g(x)$ at $x=2$. Give your answer in the form $y=m x+c$.
c. Use your answer to part (a) and the value of k, to find the x-coordinates of the stationary points of the graph of $y=g(x)$.
d. i. Find $g^{\prime}(-1)$.
d. i. Find $g^{\prime}(-1)$.
ii. Hence justify that g is decreasing at $\mathrm{x}=-1$.
e. Find the y-coordinate of the local minimum.
3. Consider the function $f(x)=\frac{96}{x^{2}}+k x$, where k is a constant and $x \neq 0$.
a. Write down $f^{\prime}(x)$.
[2]

The graph of $y=f(x)$ has a local minimum at point $x=4$.
b. Show that $k=3$.
[2]
c. Find $f(2)$.
[2]
d. Find $f^{\prime}(2)$.
e. Find the equation of the normal to the graph of $y=f(x)$ at the point where $x=2$. Give your answer in the form $a x+b y+d=0$ where $a, b, d \in \mathbb{Z}$.
f. Sketch the graph of $y=f(x)$, for $-5 \leq x \leq 10$ and $-10 \leq y \leq 100$.

g. Write down the coordinates of the point where the graph of $y=f(x)$ intersects the x -axis.
h. State the values of x for which $\mathrm{f}(\mathrm{x})$ is decreasing.

REVIEW SET 20B
1 a i 5 ii $4 \frac{1}{2}$ iii 4.1
b $f^{\prime}(x)=2 x+2 \quad$ c gradient $=4$, as $x \rightarrow 1, f^{\prime}(x) \rightarrow 4$
2 a $\frac{d y}{d x}=6 x-4 x^{3}$
b $\frac{d y}{d x}=1+x^{-2}$
c $\frac{d y}{d x}=2-x^{-2}+6 x^{-3}$

$$
\begin{array}{|llllll}
3 & y=9 x-11 & 4 & \left(-\frac{1}{\sqrt{2}},-2 \sqrt{2}\right) & \text { and }\left(\frac{1}{\sqrt{2}}, 2 \sqrt{2}\right) \\
5 & \text { a }-17 \quad \text { b } & -17 & 6(10.1,-13.0) & 7 \quad a=2, b=3 \\
8 & \text { a } & \mathrm{P}(2,5) & \text { b } y=x+3 & \text { c }(-3,0) & \text { d } y=-x+7
\end{array}
$$

$3 y=9 x-11 \quad 4\left(-\frac{1}{\sqrt{2}},-2 \sqrt{2}\right)$ and $\left(\frac{1}{\sqrt{2}}, 2 \sqrt{2}\right)$
$5 \quad \begin{array}{lllll}\mathbf{a} & -17 & \text { b } & -17 & 6(10.1,-13.0) \quad 7 \quad a=2, \quad b=3\end{array}$
8 a $\mathrm{P}(2,5)$
b $y=x+3 \quad$ c $(-3,0)$
d $y=-x+7$

REVIEW SET 20C
1 a $f^{\prime}(x)=4 x^{3}+6 x^{2}+6 x \quad$ b $\quad f^{\prime}(x)=-6 x^{-4}-4 x^{-5}$ c $f^{\prime}(x)=-x^{-2}+8 x^{-3}$
$2 \begin{array}{lllllll}\mathbf{a} & -5 & \text { b } & -12 & \text { c } & \frac{7}{9} & \text { d } \\ -1 & 3 & y=-24 x+36\end{array}$ $4 S^{\prime}(t)=0.9 t^{2}-36 t+550 \mathrm{~g} \mathrm{sec}^{-1}$

This gives the instantaneous rate of change in weight, in grams per second, for a given value of t.

$$
4 S^{\prime}(t)=0.9 t^{2}-36 t+550 \mathrm{~g} \mathrm{sec}^{-1}
$$

This gives the instantaneous rate of change in weight, in grams per second, for a given value of t.

$$
5 \quad y=-\frac{1}{2} x+\frac{13}{2} \quad 6 \quad a=3, \quad b=7
$$

$$
7(-1.32,-0.737) \text { and }(1.32,-1.26)
$$

$$
8 \quad \text { a } f^{\prime}(x)=3 x^{2}-8 x+4
$$

b $f^{\prime}(1)=-1$. This is the gradient of the tangent to the curve at the point $x=1$.
c il $0 \quad$ ii $y=1$

