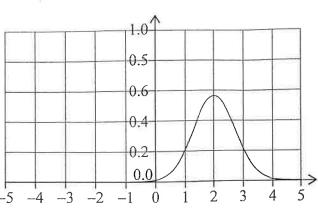
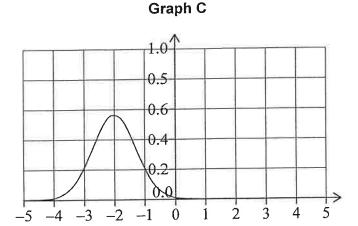
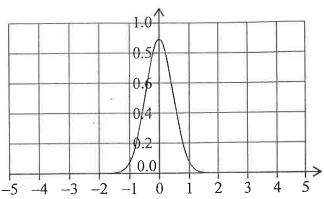

Maximum marks will be given for correct answers. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. Answers must be written within


suita	answer boxes provided. Solutions found from a graphic display calculator should be supported by able working, for example, if graphs are used to find a solution, you should sketch these as part of answer.
1.	A calculator fits into a cuboid case with height 29 mm, width 98 mm and length 186 mm.

- Find the volume, in mm³, of this calculator case. Give your answer to two significant figures. [2] (a)
 - Write down your answer to part (a) in the form $a \times 10^k$ where $1 \le a < 10$ and $k \in \mathbb{Z}$. [2] (b)
 - Find the volume, in cm³, of this calculator case. [2] (c)


Working:	
£	
	€ .
-	
*	
	Answers:
	(a)
	(b)
	(C) 154 155 157 157 157 157 157 157 157 157 157


11. Consider the following graphs of normal distributions.

Graph B

Graph D

(a) In the following table, write down the letter of the corresponding graph next to the given mean and standard deviation.

Mean and standard deviation	Graph
Mean = -2 ; standard deviation = 0.707	
Mean = 0 ; standard deviation = 0.447	

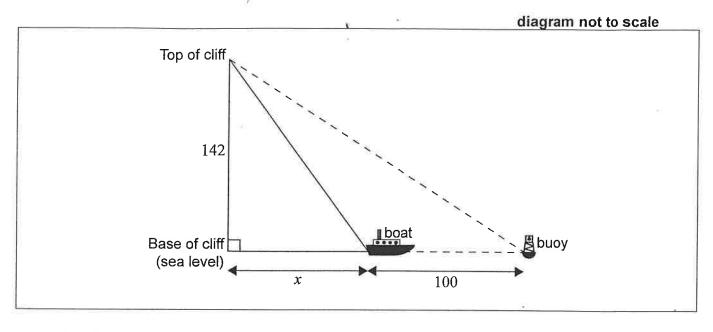
At an airport, the weights of suitcases (in kg) were measured. The weights are normally distributed with a mean of $20\,kg$ and standard deviation of $3.5\,kg$.

(b) Find the probability that a suitcase weighs less than 15 kg.

[2]

[2]

Any suitcase that weighs more than $k \log is$ identified as excess baggage. 19.6% of the suitcases at this airport are identified as excess baggage.


(c) Find the value of k.

[2]

(This question continues on the following page)

8. A buoy is floating in the sea and can be seen from the top of a vertical cliff. A boat is travelling from the base of the cliff directly towards the buoy.

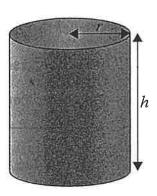
The top of the cliff is $142\,\mathrm{m}$ above sea level. Currently the boat is $100\,\mathrm{metres}$ from the buoy and the angle of depression from the top of the cliff to the boat is 64° .

(a) Draw and label the angle of depression on the diagram.

- [1]
- (b) Find x, the horizontal distance currently between the base of the cliff and the boat.
- [2]

(c) Find the distance from the **top of the cliff** to the buoy.

[3]


Answers:
(b)
(c)

Working:

15. A cylinder with radius r and height h is shown in the following diagram.

diagram not to scale

[2]

The sum of r and h for this cylinder is $12 \, \mathrm{cm}$.

- (a) Write down an equation for the area, A, of the **curved** surface in terms of r.
- (b) Find $\frac{\mathrm{d}A}{\mathrm{d}r}$. [2]
- (c) Find the value of r when the area of the curved surface is maximized. [2]

Working:

Answers:

- (b)
- (c)