Pick Up the Solutions to the HW

assuming that you did do the assuming that you did do the assignment with fidelity.

1

Do heavier cars really use more gasoline?

3. Create a scatter plot given the two-variable data. Be sure to put the dependent variable, the response variable, on the x-axis. <u>Always</u> label each axis fully.

Weight of car in	27						-	
hundreds of		44	32	47	23	40	34	52
pounds (x)								
Miles per gallon	30	10	24	12	20	17	21	14
(y)		19	24	12	29	17	21	14

4. Just by viewing the scatter plot, interpret the correlation.

Calculate the linear correlation coefficient to confirm your interpretation, r = _____

	6.	Now calculate r by "hand" showing the complete formula, followed by the formula with the three critical totals shown, followed by the answer.
7.	Calco fit).	ulate the LSRL (least squares regression line which is a commonly accepted line of best Use the calculator basics reference sheet if needed.
		y =
8.	Use	the LSRL equation to estimate the gas mileage of a car that weighs 2000 pounds.
	Do y	ou feel this estimate is trustworthy?

low is the diagram of a cone shaped tent. Angle NPX is 16°, the slant height of the lie is 3.3m.

Notes on Day 3

Once we have the equation of the curve, we can use the curve to predict values of y for other values of x. The equation of the curve can also be very helpful for understanding phenomena:

The line of best fit will always pass through the *mean point* of the two variables

(**x**, **y**)

This mean point is also called the center of gravity of the data.

$$\begin{array}{l} y - \overline{y_{1}} = \frac{5x_{9}}{(5x)^{2}} \left(x - \overline{x} \right) \\ y - 62.889 = \frac{219.9382}{(24.409)^{2}} \left(x - 66.444 \right) \\ \overline{y} - 62.889 = 0.369118 \left(x - 66.444 \right) \\ \overline{y} - 62.88118 \left(x - 66.444 \right) \\ \overline{y} - 62.88118 \left(x - 66.444 \right) \\ \overline{y} - 62.88118 \left(x - 66.444 \right) \\ \overline{y} - 62.88118 \left(x - 66.444 \right) \\ \overline{y} - 62.88118 \left(x - 66.444 \right) \\ \overline{y} - 62.88118 \left(x - 66.444 \right) \\ \overline{y} - 62.88118 \left(x - 66.444 \right) \\ \overline{y} - 62.88$$

$$Way of Communicating Understanding
S_{xy} = \frac{(36-46.444)(55-62,3391)+(33-666.444)(72-62.3391)+_{0000}}{9}$$

$$= \frac{1979.4444...}{9}$$

$$= 219.9383$$

TV/GPA trample STATS Needed : X = 12,4444 y = 3,0222 5, = 5,4997 () covariance . $S_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{n} = \frac{-72.7889}{9}$ = -2.532)

Quiz on Normal Distrib.

Assignment

"Day 3 Statistical Applications"

Why don't statisticians like to model new clothes ?

Lack of Fit

Intriguing Inert Igloos