
assuming that you did to the assignment with fidelity o

Convert

$$
y-3.47=0.68(x-4.36)
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

which is in POINT-SLOPE form to slope intercept form and then state the gradient and y-intercept.

$$
y=m x+c
$$

Convert $\mathrm{y}-3.47=0.68(\mathrm{x}-4.36)$ to slope intercept form and then state the gradient and y-intercept.

$$
\begin{aligned}
y-3.47= & 0.68 x-2.9648 \\
y= & 0.68 x+0.5052 \\
& \text { gradient is } 0.68 \\
& y \text {-intercept }(0,0.5052)
\end{aligned}
$$

$$
y_{-}-y_{1}=m\left(x-x_{1}\right)
$$

Write the equation, In POINT-SLOPE form, of the line with a slope of $3 / 7$ that passes through ($-4,6$)
leave your answer in POINT-SLOPE form

$$
y-6=\frac{3}{7}(x+4)
$$

Interpolation / Extrapolation

Check your HW solutions.

 Let me know if you have any questions.
Statistical Applications

Name \qquad

Assignment 2

The following is a scatterplot of total fat versus protein for 30 items on the Burger King menu:

Do heavier cars really use more gasoline?

3. Create a scatter plot given the two-variable data. Be sure to put the dependent variable, the response variable, on the x-axis. Always label each axis fully.

Weight of car in hundreds of pounds (x)	27	44	32	47	23	40	34	52
Miles per gallon (y)	30	19	24	13	29	17	21	14

4. Just by viewing the scatter plot, interpret the correlation.
5. Calculate the linear correlation coefficient to confirm your interpretation, $r=$ \qquad
6. Now calculate r by "hand" showing the complete formula, followed by the formula with the three critical totals shown, followed by the answer.
7. Calculate the LSRL (least squares regression line which is a commonly accepted line of best fit). Use the calculator basics reference sheet if needed.

$$
y=
$$

8. Use the LSRL equation to estimate the gas mileage of a car that weighs 2000 pounds.

Do you feel this estimate is trustworthy?
9. The heights in cm of the members of 4 volleyball teams A, B, C and D were taken and represented the frequency histograms given below

\bar{x} and σ	Team
I	
II	
III	
IV	

The mean \bar{x} and standard deviation σ of each team are shown in the following table.

	I	II	III	IV
\bar{x}	194	189	188	195
σ	6.50	4.91	3.60	3.74

ow is the diagram of a cone shaped tent. Angle NPX is 16°, the slant height of the he is 3.3 m .

(a) Find the radius of the cone.
(b) Find the vertical height of the cone.
(c) Find the volume of the cone.

A right circular cone

Random HW Check

Turn in your HW

If you end up doing something with correlation on your project, you may want to read the section in the Ch. 11 packet on

The Coefficient of Determination

Curve Fitting

Once we have the equation of the curve, we can use the curve to predict values of y for other values of x. The equation of the curve can also be very helpful for understanding phenomena:

AIM TODAY
 notes will be given

Calculate the LSRL equation "by hand"

The line of best fit will always pass through the mean point of the two variables

$$
(\overline{\mathbf{x}}, \overline{\mathbf{y}})
$$

This mean point is also called the center of gravity of the data.

b) $\bar{x}=6.57$ people
c) $r=-0.903$ is the correlation coefficient. $\bar{y}=22$ minutes
d) There is a strong negative aorralation a but not necessarily linear. With this litik quantity of data, it might be risky to trust a linear model derived from this data.
e): $y=-5.53 x+58.4$ is the equation of the regression
(9) $y=-5.53(5)+58.4 \div 30.8$ minutes for 5 people to do the $j \Delta b$.
the differences are called
errors

Method of Least Squares
 Applet

Least Squares Regression Line by hand

$\stackrel{\bullet}{y}-\bar{y}=\frac{s_{x y}}{\left(s_{x}^{2}\right.}(x-\bar{x})$ in Point-Slope form
the line passes through the mean point, (\bar{x}, \bar{y})
required stats

$$
\begin{aligned}
& \bar{x}=66.444 \\
& \text { (1) Covariance } \\
& \bar{y}=62.889 \\
& S_{x}=24.409 \\
& \text { mean point } \\
& g_{x y}=\frac{\sum(x \cdot \bar{x})\left(y_{i}-\bar{y}\right)}{n} \\
& =\frac{1979.444 \cdot 0}{9} \\
& (66,444.62 .889)=219.9383
\end{aligned}
$$

$\left(s_{x}\right)^{2}$ is the standard deviation, squared is the covariance and will be given to you on
$S_{x y} \quad$ the IB test, but you might need to calculate this on a project if you really wanted to.

Lit Rate vs Population
required stats
If using on
$\bar{x}=66.444$ round beyond one or 'wo
$\bar{y}=62.889$ is in the hundreds.
$S_{x}=24.410 \leqslant \begin{aligned} & \text { Use } \sigma \text { GD } \\ & G D C\end{aligned}$

(1)Covariance $S_{x y}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n}$

$$
=\frac{1979.444 \ldots \ldots}{9}
$$

($66.444,62.889$)

$$
=219.9383
$$

(2) Point-slope

$$
\frac{n t-\text { Slope }}{y-\bar{y}}=\frac{S_{x y}}{\left(S_{x}\right)^{2}}(x-\bar{x}) \quad y-62.889=\frac{219.92}{(24}
$$

Slope-intercept
form

$$
\begin{aligned}
& y-62.889=.369118 x-24.5257 \\
&+62.889
\end{aligned}+62.889
$$

Way of Communicating Understanding

$$
\begin{aligned}
S_{x y} & =\frac{(36-66.444)(55-62,889)+(93-66,444)(72-62.889)+0003}{9} \\
& =\frac{1979.444 \ldots}{9} \\
& =219.9383
\end{aligned}
$$

With a partner do the back side

TV/GPA example
STATS Needed: $\bar{x}=12.4444 \quad \bar{y}=3.0222 \quad S_{x}=5.4997$
(1) covariance

$$
\begin{aligned}
S_{x y}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n} & =\frac{-22.7889}{9} \\
& =-2.5321
\end{aligned}
$$

(2) Equation $y-\bar{y}=\frac{s_{x y}}{\left(s_{x}\right)^{2}}(x-\bar{x})$ mean point
$(12.4445,3.0227)$

$$
\begin{aligned}
y-3.0222=-.08371 x & +1.0418 \\
& +3.0222
\end{aligned}
$$

$$
+3.0222
$$

$$
+3.0222
$$

$$
\begin{aligned}
& y=-.08371 x+4.0640 \\
& y=-.0837 x+4.06
\end{aligned}
$$

Gradient $=$ Slope

Quiz on Normal Distrib.

Assignment
"Day 3 Statistical Applications"

Fascinating Furball Fluffies

Why don't statisticians like to model new clothes?

Lack of Fit

Intriguing Inert Igloos

