

Also have your "Graphing Calculator Basics" handy.

can past funding of the arts predict future funding? Below you will see two variable data that was collected from the National Endowment of the Arts. The data might help answer the question above.

Year	1990	1991	1992	1993	1997
NEA Funding(millions of \$)	170.8	166.5	163.0	159.7	151.2

With the help of the Graphing Calculator Basics, do the following:
a. Enter the data above (with the independent variable, Year, in list 1.
b. Make a Scatter Plot of the data on your GDC. (Help each other on this).
c. Looking at your GDC, make a labeled sketch here......

$$
\text { Mean Point }(\bar{x}, \bar{y})
$$

Viewing your line and your Scatter Plot simultaneously

Select STAT then toggle to CALC, then to LinReg(ax + b), Then add one more comma and Y_{1}, then ENTER. Then ZOOM 9

d. Now Calculate the LSRL (an accepted line of best fit) and write down it's equation in slope intercept form.
i.
\qquad
e. Now follow the instructions to superimpose with your data by following the instructions.
f. Lastly, try tracing both your data and your LSRL. If you ever need to graph your LSRL onto Graph Paper, the trace function or Table can be very helpful to draw it accurately on the paper. Graphing hint:

Look at the scatter plot you drew.
Is there a trend in the data?
Is there a linear trend in the data? If there is a strong linear trend, then there is a strong linear correlation between Year and NEA funding.
is the deadline to drop any class if you want no record on your transcript.
(Completed paperwork signod by parents must be in by tomorrow)

HoV.
questions

$$
\begin{aligned}
& \text { 5) PhysicsTost }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{inv} \operatorname{Narm}\left(\cdot{ }^{43}, 46,2\right) \\
& P(x>\text { value })=0 \\
& =P(x<\text { value })=\frac{.93}{2} \\
& \text { Value }=
\end{aligned}
$$

sp er $N \sim\left(56.3,74^{2}\right)$
a) $P(60 \leq x \leq 75)=$
b) $P($ at most 70$)=P(x \leq 70)$
c) $p($ at least $)=P(x \geq 60)$
p.309....2 $X \sim N\left(38.7,8.2^{2}\right)$
a) $p(x \leq k)=.9$

b) $p(x \geq k)=.8$

p.309 6 Fish species $\quad x \rightarrow N\left(35,8^{2}\right)$

Smallest 10\% get thrown back e

$$
p(x<k)=0.10
$$

Day 3 Solutions (Normal Distribution)
p. 307... 9 speed of cars $\mu=56.3 \mathrm{~km} \mathrm{~h}^{-1}, \sigma=7.4 \mathrm{kmh}^{-1}$
a) $P(60<x<75)=0.303$ or $30.3^{1 \%}$
b) at most is
$=$ less than or equal to

$$
P(x \leq 70)=0.968=96.8^{.1} \text {. }
$$

c) at least is same as greater than or equal to

$$
P(x \geq 60)=0.309=30.9^{1}
$$

p. $309 \ldots 2 \quad \chi \sim N\left(38.7,8.22^{2}\right)$ so $\mu=38.7 \quad \sigma=8.2 \quad$ of
a)

b)

$$
\begin{gathered}
P(x \leq k)=0.9 \\
k=49.2
\end{gathered}
$$

invNorm $(.9,38.7,8.2)$

$$
\begin{aligned}
& P(x \geq k)=0.8 \\
& P(x \leq k)=0.2 \\
& k=31.8
\end{aligned}
$$

$$
\text { inv } \operatorname{Norm}(0.2,38.7,8.2
$$

\$.309...5
Physics Test $\mu=46$
$\sigma=25$

$$
\begin{aligned}
& \mu=46 \\
& \sigma=25
\end{aligned}
$$

$$
\begin{aligned}
& p(x \leq k)=0.93 \\
& \text { so } K=82.9
\end{aligned}
$$

SO, anyone earning a raw score of $82.9(\approx 83)$ will get an A

Fish $\mu=35 \quad \sigma=8_{c m}$

$$
\begin{gathered}
P(x \leq K)=0.1 \\
\text { so } K=24.7
\end{gathered}
$$

so the smallest fish that can be harvested

Statistical Applications Correlation
LSRL.
The Chi-Square test of Indepent.

- Project Stuff

$$
\text { Test - Mon. Oct } 7^{\text {th }}
$$

Often a statistician will want to know how often two variables are "related" or "associated".
example) temperature vs. \#customers at Starbucks
incidence of
heart disease US. intake of Omega 3 oils
arm length vs, running speed

notes

Today

Calculate and interpret correlation between two quantitative variables

Correlation can be visually assessed from Scatter Plots

http://www.learner.org/courses/againstallodds/unitpages/unit12.html

$$
\begin{aligned}
& \begin{array}{l}
\text { Pearson's Product-Imoment } \\
\text { correlation coefficient }
\end{array} \\
& \begin{array}{l}
\text { Linear correlation } \\
\text { coefficient }
\end{array} \\
& \quad \text { not } R \text { not } R^{2}
\end{aligned}
$$

Values of r

Hand out on the Correlation Coefficient,r

Correlation Coefficient, \boldsymbol{r}

The quantity r, called the linear correlation coefficient. It measures the strength and the direction of a linear relationship between two variables. The linear correlation coefficient is sometimes referred to as the Pearson product moment correlation coefficient in honor of its developer Karl Pearson. The mathematical formula for computing r is:

$$
\begin{aligned}
& \boldsymbol{r}=\frac{\sum(\boldsymbol{x}-\overline{\boldsymbol{x}})(\boldsymbol{y}-\overline{\boldsymbol{y}})}{\sqrt{\sum(\boldsymbol{x}-\overline{\boldsymbol{x}})^{2} \sum(\boldsymbol{y}-\overline{\boldsymbol{y}})^{2}}} \\
& r=\frac{n \sum x y-\left(\sum x\right)\left(\sum y\right)}{\sqrt{n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}} \sqrt{n\left(\sum y^{2}\right)-\left(\sum y\right)^{2}}}
\end{aligned}
$$

$r=-1$ indicates a perfectly strong negative linear relationship.
$r=00.8$ indicates a relatively strong negative linear relationship
$r=-0.5$ indicates a moderate negative linear relationship
$r=-0.2$ indicates a weak negative linear relationship
$r=0$ indicates no linear relationship
$r=0.5$ indicates a moderate positive linear relationship
Note: There are different scales like this published and they all don't agree!
$r=0.8$ indicates a relatively strong positive linear relationship
$r=1$ indicates a perfectly strong positive linear relationship.

correlation guessing

(http://istics.net/stat/Correlations/

We can make predictions if:

 there is a strong correlation betweentwo variables (as long as we are not
extrapolating).

Is there a strong relationship between the two variables in the first study? the second?

Calculating ${ }^{\mathbf{r}}$ with GDC

follow the instructions on the GDC basics

Conflicts

Scatter plots and other Stat Plots can cause trouble when you graph functions in the " $Y=$ " menu. Therefore, turn off Stat plots when you are done. You can also see them turned on in the $Y=$ menu

Linear Correlation Coefficient, r

Same steps as LSRL
Notice the correlation coefficient, r, is given on the last line.
If you don't see it, then you need to turn your "DiagnosticsOn" in the Catalog.

Calculating the Line of Best Fit (LSRL)

Select STAT then toggle to CALC, then to LinReg(ax + b)
Then the two lists which contain your data with a comma in between.

Select ENTER and the top two lines will give your slope and y-intercept

Now go to the data on the back side of
the Warm UP

$$
\begin{aligned}
& \text { now reverse } \\
& \text { the coordinates } \\
& \text { 1-var Stats } L_{2}, L_{1} \\
& r=
\end{aligned}
$$

Year	1820	1860	1880	1920	1940	1980	2000
Pirates	35000	45000	20000	15000	5000	400	17
Temperature	14.3	14.4	14.6	14.7	15.1	15.5	15.8

Global Temperature Vs. Number of Pirates

Number of Pirates IAnnroximate]

Interpreting Correlation:

a) Comment on strength / direction.
b) If reasonably strong, also make a summary statement such as

Interpreting Correlation:

a) Comment on strength / direction.

There is a strong, negative, correlation
between \# of pirates and Global
Temperatures
b) If reasonably strong, also make a summary statement such as

As the number of pirates increased, the Global Temperatures decreased.

Important Note
the existence of correlation does not, repeat NOT,
imply that one variable is CAUSED by the other.

It simply shows that the two variables are related.

Both of them could be caused by a third confounding variable

```
CORRELATION DOES NOT EQUAL CAUSATION.
CORRELATION DOES NOT EQUAL CAUSATIO."
SCIENCEOFRELATIONSHIPS.COM



\title{
Tomorrow- Turn in the four HW assignments, in order, stapled together.
}

\section*{Assignment: \\ a handout}

Degree of Correlation


Strong Positive


Weak Positive


None


Strong Negative


Moderate Negative


Weak Negative```

