

Describing distributions of quantitative data
Brian and Jessica have decided to move and are considering seven different cities. The dotplots below show the daily high temperatures in June, July, and August for each of these cities.

1. What is the most important difference between cities A, B, and C ?
2. What is the most important difference between cities C and D ?
3. What is the most important difference between cities D and E ?

4. What is the most important difference between cities C, F, and G ?

Shape
Outliers
t Context
$+-l y$ words
Center \checkmark ariability

Shape
Outliers
t Context
$+-l y$ words
Center
« Use "Comparing Words V ariabilityk when company two

We used Census At School's "Random Data Selector" to choose 50 students from each country. Here are dotplots of the household sizes reported by the survey respondents. Compare the distributions of household size for these two countries.

We used Census At School's "Random Data Selector" to choose 50 students from each country. Here are dotplots of the household sizes reported by the survey respondents. Compare the distributions of household size for these two countries.

AP ${ }^{\circledR}$ Exam Tip

When comparing distributions of quantitative data, it's not enough just to list values for the center and variability of each distribution. You must explicitly compare these values, using words like "greater than," "less than," or "about the same as."

Shape: The distribution of household size for the U.K. sample is roughly symmetric, with a single peak at 4 people. The distribution of household size for the South Africa sample is skewed to the right, with a single peak at 4 people and a clear gap between 15 and 26.

Shape: The distribution of household size for the U.K. sample is roughly symmetric, with a single peak at 4 people. The distribution of household size for the South Africa sample is skewed to the right, with a single peak at 4 people and a clear gap between 15 and 26 .
Outliers: There don't appear to be any outliers in the U.K. distribution. The South African distribution seems to have two outliers: the households with 15 and 26 people.


```
Shape: The distribution of household size for the U.K. sample is roughly symmetric, with a single peak at 4 people. The distribution of household size for the South Africa sample is skewed to the right, with a single peak at 4 people and a clear gap between 15 and 26. Outliers: There don't appear to be any outliers in the U.K. distribution. The South African distribution seems to have two outliers: the households with 15 and 26 people
Center: Household sizes for the South Affican students tend to be larger (median 560 people)
```



``` than for the U.K. students (median 54 people).
```

Shape: The distribution of household size for the U.K. sample is roughly symmetric, with a single peak at 4 people. The distribution of household size for the South Africa sample is skewed to the right, with a single peak at 4 people and a clear gap between 15 and 26. Outliers: There don't appear to be any outliers in the U.K. distribution. The South African distribution seems to have two outliers: the households with 15 and 26 people.
Center: Household sizes for the South African students tend to be larger (median 56 people)
 than for the U.K. students (median 54 people).

Abstract

single peak at 4 people. The distribution of household size for the South Africa sample is skewed to the right, with a single peak at 4 people and a clear gap between 15 and 26 . Outliers: There don't appear to be any outliers in the U.K. distribution. The South African distribution seems to have two outliers: the households with 15 and 26 people. Center: Household sizes for the South African students tend to be larger (median 56 people) than for the U.K. students (median 54 people). Variability: The household sizes for the South African students vary more (from 3 to 26 people) than for the U.K. students (from 2 to 6 people).

single peak at 4 people. The distribution of household size for the South Africa sample is skewed to the right, with a single peak at 4 people and a clear gap between 15 and 26. Outliers: There don't appear to be any outliers in the U.K. distribution. The South African distribution seems to have two outliers: the households with 15 and 26 people. Center: Household sizes for the South African students tend to be larger (median 56 people) than for the U.K. students (median 54 people).
Variability: The household sizes for the South African students vary more (from 3 to 26 people) than for the U.K. students (from 2 to 6 people).

Using Histograms Wisely (pages 45-46)

- Use percents not counts when comparing distributions with different numbers of data values.

More than $\mathrm{BB} \%$ of all Bhevy tricks sold in the last 10 yerrs are still on the road.

Aim Today:
Make Effective Histograms with Graphing Calculators

LCQ later in class

Enter the total number of medals 28 countries won during the 2016 Summer Olympic Games in Rio de Janeiro.

Make a histogram

Country	Medals			
United States	121		Azerbaijan	18
China	70		Kazakhstan	17
Great Britain	67		Hungary	15
Russia	56		Denmark	15
Germany	42		Kenya	13
France	42		Uzbekistan	13
Japan	41		Jamaica	11
Australia	29		Cuba	11
Italy	28		Sweden	11
Canada	22		Ukraine	11
South Korea	21		Poland	11
Netherlands	19		Croatia	10
Brazil	19		South Africa	10
Spain	18			
New Zealand	18			

Learning Check QuIz

Assignment 1.2...55, 65, 69,
 77, 80-85
 and study pp. 34-46
 WLCQ
 (Web LCQ)

LEARNING TARGETS

After this section, you should be able to:
\checkmark MAKE and INTERPRET dotplots, stemplots, and histograms of quantitative data.
\checkmark IDENTIFY the shape of a distribution from a graph.
\checkmark DESCRIBE the overall pattern (shape, center, and variability) of a distribution and IDENTIFY any major departures from the pattern (outliers).
\checkmark COMPARE distributions of quantitative data using dotplots, stemplots, and histograms.

