

(2) Use the deseriminate $\left(b^{2}-4 a c\right)$, to determine the nature of the roots of $y=x^{2}+x+5$

$$
\begin{aligned}
& \begin{array}{l}
a=1 \\
b=1 \\
c=5
\end{array} \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad(1)^{2}-4(1)(5) \\
& x=\frac{-1 \pm \sqrt{2}}{2} \\
& \begin{array}{c}
-192 \text { complex } \\
19 \\
2 \text { real } \\
0 \text { I really } \\
\text { is repeated }
\end{array}
\end{aligned}
$$

(3) Re-read the Remainder Theorem las shown on the Polynomial Notes given in class yesterday. Then answer the following questions about $P(x)=x^{3}-6 x^{2}+T x+2$
a) what is $p(2)$ ? $P(2)=0$. So $x=2$ is
b) Use the remaind or theorem to find one factor of $p(x)$
c) Now divide to find another factor.

$$
\frac{x^{3}-6 x^{2}+7 x+2}{x-2}=
$$

$$
3 x-2
$$

$$
x^{2}-2
$$

(4) Use long division to divide

$$
\begin{aligned}
& \frac{2 x^{3}-3 x^{2}+4 x-5}{x-1} \\
& x - 1 \longdiv { 2 x ^ { 3 } - 3 x ^ { 2 } + 4 x - 5 } \\
& \begin{array}{c}
\frac{-\left(2 x^{3}-2 x^{2}\right)}{-1 x^{2}+4 x} \\
-\left(-x^{2}+x\right)
\end{array} \\
& 3 x-5 \\
& \frac{+(-3 x+3)}{-2}
\end{aligned}
$$

Questions on homework?


## Two goals for the day

Tn this Added $\quad 2 i+3 i$ or $(3+2 i)+(6+2 i)$
Chapter
(with subtratiod $5 i-2 i$ or $(2+5 i)-(3-2 i)$ imaginary numbers
multiplied $(6 i)(2 i)^{2}$ or $(2+3 i)(2-3 i)$
The final operation

Divide two complex numbers (a very abstract sill)

multiply by the conjugate of the divisor

$$
\begin{aligned}
\frac{7+7 i+3 i+}{1-i^{2}} & =\frac{4+10 i}{2} \\
& =\frac{4}{2}+\frac{10 i}{2} \\
& =2+5 i
\end{aligned}
$$

a latte more complicated


June 11, 2019

Goal 2
Create a polynomial including its stretch factor given misc. clues.

Sketch the following polynomial

1. has a single root of -4
2. has a double root of 1
3. passes through $(5,96)$

Now write the function


## Polynomial G(x)

1. has a single roots of 6 and 0
2. has an x-intercept of 2
3. The degree of $\mathrm{G}(\mathrm{x})$ is 5
4. passes through $(10,1024)$

## Polynomial G(x)

1. has a single roots of 6 and 0
2. has an x-intercept of 2
3. The degree of $\mathrm{G}(\mathrm{x})$ is 5
4. passes through $(10,1024)$

$$
\text { find } \begin{aligned}
P(x) & =a(x)(x-6)(x-2) \\
1024 & =a(10)(10-6)(10-2)^{3} \\
1024 & =20480 a
\end{aligned}
$$



Extra Practice Available (on many things; but not all)

Final Exam Test Information sheet is now available

8.... 138, 141a, 147, 152a, 160, 175, 176

No GDC

8-138 carlo $p(x)=x^{4}-4 x^{3}-4 x^{2}+24 x-9$ carlo divided $p(x)$ by $(--3)$ once to get

$$
p(x)=(x-3)\left(x^{3}-x^{2}-7 x+3\right)
$$


a) From the graph you can see that 3 is a double root so $(x-3)$ is a double factor, or $(x-3)^{2}$ which tells carlo to divide a second time by $(x-3)$
b)

$$
\begin{gathered}
\frac{x^{3}-x^{2}-7 x+3}{x-3}=x^{2}+2 x-15 \\
x \\
-3\left|\frac{x^{3}}{-3 x^{2}}\right| \begin{array}{ll|l|l|}
\hline-6 x & -x \\
\hline
\end{array}
\end{gathered}
$$



$$
\text { So.... } p(x)=(x-3)^{2}\left(x^{2}+2 x-1\right)
$$

The roots
$x=3$ (double -o ts)

$$
x=-1 \pm \sqrt{2}
$$

$$
\begin{aligned}
& x^{2}+2 x-1=0 \\
& a=1 \quad b=2 \quad c=-1 \\
& x=\frac{-(2) \pm \sqrt{(2)^{2}-y(x)(-1)}}{2(1)} \\
& x=\frac{-2 \pm \sqrt{8}}{2}=\frac{-2+2 \sqrt{2}}{2} \\
& x=-1 \pm \sqrt{2}
\end{aligned}
$$



