

warm UP Use the graph to the right to answer the following: End Behavior: As $x \rightarrow +\infty$, $f(x) \rightarrow _$ As $x \rightarrow -\infty$, $f(x) \rightarrow \underline{\qquad} + \infty$ b. Least Degree of polynomial:

TI.

(2) Use the decommentation (b²-4ac), to determine the nature
of the roots of
$$y = x^2 + x + 5$$

 $a = 1$
 $b = 1$
 $c = 5$
 $X = \frac{-b + b^2 - 4ac}{2a}$
 $(1)^2 - 4(1)(5)$
 -19 2 complet
 19 2 real
 0 1 readst
 15 repeated

(3) Re-read the Remainder Theorem (as shown on the Blynomial Notes given in class yesterday. Then answer the following questions about $p(x) = x^3 - 6x^2 + 7x + 2$ a) what is p(z)? $P(2) = \bigcirc$ a) what is p(z)? P(z) = 0 30 X=2 is a root b) Use the remainder theorem to find one factor of p(x)c) Now divide to find another factor. root 7 2 | -6 7 2 2 -8 -2 | -4 -1 0 $\chi^{3}-6\chi^{2}+7\chi+2$ = → X-2 3x-2 X²-2

Divide two complex numbers (a very abstract skell)

Polynomial G(x)

- 1. has a single roots of 6 and 0
- 2. has an x-intercept of 2
- 3. The degree of G(x) is 5
- 4. passes through (10, 1024)

Extra Practico Available (on many things, but not all) Final Exam Test Information Sheet is now available

$$[8-138] \text{ Carlo } p(x) = x^{4} - 4x^{3} - 4x^{2} + 24x - 9$$

earlo divided $p(x)$ by $(x-3)$ once to get
 $p(x) = (x-3)(x^{3} - x^{2} - 7x + 3)$
a) From the graph you can see that 3 is a double
root so $(x-3)$ is a double factor, or $(x-3)^{2}$
which tells Carlo to divide a second time
by $(x-3)$
b) $x^{3} - x^{2} - 7x + 3 = x^{2} + 2x - 15$
 $x^{2} - 3x^{2} - 4x - 1$
 $x = \frac{x^{2} - 3x^{2} - 4x}{-3}$

