

$$
\begin{aligned}
& \left(2 x^{3}+x^{2}+x+2\right) \div(x+1) \\
& \sqrt{2}-1 \\
& +\begin{array}{cccc}
2 & 1 & 1 & 2 \\
+2 & -1 & 2 & 0
\end{array} \quad-1 / \begin{array}{cccc}
2 & 1 & 1 & 2 \\
& -2 & 1 & -2 \\
\hline 2 & -1 & 2 & 0
\end{array} \\
& 2 x^{2}-1 x+2
\end{aligned}
$$

Summary Statement

$\frac{\left(2 x^{3}+x^{2}+x+2\right)}{(x+1)}=2 x^{2}-x+2$
OR
$\left(2 x^{3}+x^{2}+x+2\right)=(x+1)\left(2 x^{2}-x+2\right)$
2. Using the Integral Root Theorem (the 3rd Polynomial Theorem from 2 classes ago), list all of the possible integral roots of the polynomial $f(x)=3 x^{5}-2 x^{2}+6$. (possible roots that are integers in other words).

$$
f(x)=3 x^{5}-2 x^{2}+6
$$

$2 \cdot 3$

integral roots
3. Can you predict the remainder of a polynomial division problem, say $\frac{x^{4}-x^{3}+20 x-48}{x-5}$, without actually dividing? It turns out to be pretty easy. Polynomial Theorem \#4 will shown you how.

Remainder Theorem: For any number c, when a polynomial $p(x)$ is divided by $(x-c)$, the remainder is $p(c)$. For example, if the polynomial $p(x)=-x^{3}+20 x-48$ is divided by $(x-5)$, the remainder is $p(5)=552$.

Note that it follows from the Remainder Theorem that if $p(c)=0$, then $(x-c)$, is a factor. For example, if $p(x)=x^{3}-3 x^{2}+4$, one solution to $x^{3}-3 x^{2}+4=0$ is $x=-1$. Since $p(-1)=0$, then $(x+1)$ is a factor.
root $=$ to $x^{3}-3$
-2
With that in mind, predict the remainder of $\frac{x^{5}+x^{4}+5}{(x+2)}$ using this Theorem.

$$
P(-2)=(-2)^{5}+(-2)^{4}+5=-11
$$

4. Create a polyomial function, in standard form, with roots 6 and $2+2 i$
hint: what do you know about complex roots?
hint: start with with factored form first, then convert to standard form.

5. Create a polyomial function, in standard form, with roots 6 and $2+2 i$
hint: what do you know about complex roots?
hint: start with with factored form first, then convert to standard form.

$$
\begin{aligned}
y & =(x-6)[x-(2+2 i)][x-(2-2 i))] \\
& =(x-6)(x-2-2 i)(x-2+2 i)
\end{aligned}
$$

$$
\begin{aligned}
& y=(x-6)[x-(2+2 i)][x-(2-2 i)] \\
& =(x-6)(x-2-2 i)(x-2+2 i) \\
& y=(x-6)\left(x^{2}-4 x+8\right)
\end{aligned}
$$

$$
\begin{aligned}
& y=(x-6)[x-(2+2 i)][x-(2-2 i)] \\
& =(x-6)(x-2-2 i)(x-2+2 i) \\
& y=(x-6)\left(x^{2}-4 x+8\right) \\
& y=x^{3}-10 x^{2}+32 x-48
\end{aligned}
$$

$$
\begin{array}{c|c|c|c|}
\hline x^{2} & -4 x & 8 \\
\hline x & x^{3} & -4 x^{2} & 8 x \\
\hline-6 & -6 x^{2} & 24 x & -48 \\
\hline
\end{array}
$$

$$
\begin{aligned}
y & =(x-6)[x-(2+2 i)][x-(2-2 i)] \\
& =(x-6)(x-2-2 i)(x-2+2 i) \\
y & =(x-6)\left(x^{2}-4 x+8\right)
\end{aligned}
$$

sum

$$
8-123 \quad x^{3}-9 x^{2}+19 x+5
$$

a) $\frac{x-2}{}$ b) because 5 is a factor of the lost term c) $x+3$)
d) $x+2$ and 2 and 3 are not

This leads us to the INTEGRAL ZERO THEOREM

8-122 $(x-2)(x+3)(x-5)$
a) $x^{3}-4 x^{2}-11 x-5$
b) $2 x^{3}-4 x^{2}-11 x+30 \quad$ because the y-intercept $(x=0)$ is
c) $x^{3}-4 x^{2}-11 x+30$

$$
(-2)(3)(-5)=30
$$

d) $2 x^{3}-4 x^{2}-11 x-5$ and because the leading

$$
(x)(x)(x)=x^{3}, \text { not } 2 x^{3}
$$

$120 x^{3}+5 x^{2}-16 x-14=0$
c) $d) \quad(x+7)($ quadratic factor $)=0$

$$
\begin{gathered}
\frac{x^{3} \neq 5 x^{2}-16 x-14}{x+7}= \\
(x+7)\left(x^{2}-2 x-2\right)=0 \\
\begin{array}{c}
\downarrow \\
x+7=0 \\
x=-7 \\
x
\end{array} \quad x^{2}-2 x-2=0
\end{gathered}
$$

$$
\frac{x^{3}+5 x^{2}-16 x-14}{x+7}=x^{2}-2 x-2
$$

$\left.\begin{array}{rl}\left.\begin{array}{l}121 \\ 2 x^{3}+3 x^{2}-8 x+3\end{array}\right) \\ (x-1)\left(2 x^{2}+5 x-3\right) & =0 \\ x-1=0 & x=1 \\ 2 x^{2}+5 x-3=0\end{array}\right]$

You'll check HW Solutions later
e)

$$
\begin{gathered}
x^{3}+5 x^{2}-6 x-14=0 \\
(x+7)\left(x^{2}-2 x-2\right)=0 \\
\downarrow \quad \downarrow \\
x^{2}-2 x-2=0
\end{gathered}
$$

-)

$$
\begin{aligned}
a=1 \\
b=-2 \\
c=-2
\end{aligned} \quad x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1+2)}}{2(1)}=\frac{2 \pm \sqrt{12}}{2}, ~=\frac{2 \pm 2 \sqrt{3}}{2}=\frac{2 \sqrt{1}+\sqrt{3}}{2} .
$$

Solutions are $x=-7,1 \pm \sqrt{3}$
$8-121$

$$
\begin{aligned}
& \left.1 . \begin{array}{l}
2 x^{3}+3 x^{2}-8 x+3=0 \\
(x-1)(?)
\end{array}\right)=0 \\
& (x-1)\left(2 x^{2}+5 x-3\right)=0 \\
& \downarrow \\
& x-1=0 \quad \\
& 2 x^{2}+5 x-3=0 \\
& x=1 \quad \\
& a=2 \\
& b=5 \\
& c=-3
\end{aligned}
$$

$$
\frac{2 x^{3}+3 x^{2}-8 x+3}{(x-1)}=2 x^{2}+5 x-3
$$

$$
x=\frac{-(5) \pm \sqrt{\left.(5)^{2}-4(2) \in 3\right)}}{2(2)}=\frac{-5 \pm \sqrt{49}}{4}=\frac{-5 \pm T}{4}
$$

$$
x=\frac{-5+7}{4}=\frac{2}{4}=\frac{1}{2} \quad x=\frac{-5-7}{4}=\frac{-12}{4}=-3
$$

Solutions $x=1,0,5,-3$

$$
\begin{aligned}
& x^{2}-4 x-1 \quad a=1, b=-4, c=-1 \\
& x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(-1)}}{2(1)}=\frac{4 \pm \sqrt{20}}{2}=\frac{4 \pm 2 \sqrt{5}}{2} \\
& =\frac{2(2 \pm \sqrt{5})}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 8-124 \\
& \left\{\frac{x^{3}-9 x^{2}+19 x+5}{x-5}=x^{2}-4 x-1\right.
\end{aligned}
$$

$8-125$
a) $5 x^{2}-7 x-6$

$$
\begin{aligned}
& 5 x^{2}-7 x-6 \\
& (5 x+3)(x-2)
\end{aligned}
$$

F

-1	30
-2	15
-3	10
3	-10

b) $(5 x+3)(x-2)=0$
c) the solutions come from
 the factors set equal to 0 . $5 x+3=0$ $\begin{array}{ll}5 x=-3 \\ x=\frac{-3}{5} & x=2\end{array}$
d) 3 and 2 are factors of the is a factor of the lead coefnient

(a) See the combination histogram boxplot below. The five number summary (for the box plot) is $0,2.75,8,15.7,36.5$.

(b.)Describe the center, shape, spread and outliers.
.The distribution has a right skew and an outlier at 36.5 pounds so the center is best described by the median of 8.0 pounds and the spread by the IQR of 12.95 pounds.

Start a new sheet in your notes. (lots of space needed)
find roots of larger degree polynomials
$\left(3^{\text {rd }}, 4^{\text {th }}\right.$, etc... $)$

Factor Theorem	Fundamental Theorem of Algebra
Integral Zero Theorem	Remainder Theorem

TASK

Find all of the roots of the polynomial

$$
P(x)=x^{4}-x^{3}-5 x^{2}+3 x+6
$$

$$
5-6 \sqrt{3}-\sqrt{3}
$$

$$
P(x)=x^{4}-x^{3}-5 x^{2}+3 x+6
$$

List possible Zeros (Roots) (Integral Zero Theorem)

Now graph the function see what the possible roots (and factors) are

$$
\begin{aligned}
& x=2 \\
& x=-1
\end{aligned}
$$

Write the Root Equation:

$$
\begin{aligned}
& x^{4}-x^{3}-5 x^{2}+3 x+6=0 \\
& (x-2)\left(x^{3}+x^{2}-3 x-3\right)=0 \\
& \text { would change to } \\
& (x-2)(x+1)(? ? \\
& \left.? \frac{x^{3}+x^{2}-3 x-3}{x+1}\right)
\end{aligned}
$$

$$
\begin{array}{lccc}
& x^{4}-x^{3}-5 x^{2}+3 x+6 & (x-2) \\
\begin{array}{llll}
\text { root } \\
2 \\
+1 & -1 & -5 & 3 \\
1 & 2 & -6 & -6 \\
1 & -3 & -3 & 0
\end{array} & x=2 \\
x^{3}+x^{2}-3 x-3 &
\end{array}
$$

$$
\frac{x^{4}-x^{3}-5 x^{2}+3 x+6}{x-2}=x^{3}+x^{2}-3 x-3
$$

would change to

$$
(x-2)\left(x^{3}+x^{2}-3 x-3\right)=0
$$

Divide a $2^{\text {nd }}$ time...

$$
\frac{x^{3}+x^{2}-3 x-3}{(x+1)}=
$$

Write the Root Equation:

$$
\begin{aligned}
& x^{4}-x^{3}-5 x^{2}+3 x+6=0 \\
& (x-2)\left(x^{3}+x^{2}-3 x-3\right)=0 \\
& (x-2)(x+1)\left(x^{2}-3\right)=0 \\
& \text { Last two roots? } \\
& \begin{array}{l}
(x) p P \\
x^{2}=3=3 \\
x^{2}=3
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
=(x-2)(x+1)\left(x^{2}-3\right)=0 \\
\text { r } \quad 1 \\
\text { two linear one } \begin{array}{c}
\text { quadratic } \\
\text { factors factor } \\
2 P p x^{3}-3=0 \\
x^{3}=3 \\
\sqrt{x} \\
x= \pm \sqrt{3}
\end{array}
\end{gathered}
$$

$$
\begin{array}{r}
0=(x-2)(x+1)\left(x^{2}-3\right) \\
\forall \quad \begin{array}{r}
x \\
x=2 \quad x=-1 \quad x^{2}-3=0 \\
x^{2}=3 \\
r \quad r \\
x= \pm \sqrt{3}
\end{array}
\end{array}
$$

fand all roots

$$
2,-1, \pm \sqrt{3}
$$

fand all exact x-9ntercepts (4) $(2,0)(-1,0)(\sqrt{3}, 0)(-\sqrt{3}, 0)$
x-intercepts: $-1,2, \pm \sqrt{3}$

Is there another

$$
P(x)=x^{4}-x^{3}-5 x^{2}+3 x+6
$$

way we could have found

$$
0=(x-2)(x+1)\left(x^{2}-3\right)
$$

Keep your eye out for double roots......

assignment

8...... 132c (ignore poster) 139a, 142, 145-146, 154

Period 2
Turn in your notebook, name/period on front or inside cover with Period 2

