Pick up the hand out do both sides

Ch. 8 Test Thursday June 8

(2) $g(x)$
a) How many linear factors? \qquad
b) How mani quadratic? \qquad
c) \# real roots?

$$
\pm \sqrt{-6}
$$

a) Explain how the term $2 x^{2}$ in cell C 3 of the news article was generated. $(-2)\left(-x^{2}\right)$
b) What values were combined to get $-7 x^{3}$ in the news article answer? $-3 x^{3}+-4 x^{3}$

Copy and complete the Polydoku puzzle below.

\longleftarrow Answer
(5)

Copy and complete the Polydoku puzzle below.

A

$$
8 x^{4}+0 x^{3}-22 x^{2}-4 x+15 \longleftarrow \text { Answer }
$$

HW Questions
factors that look like:

$$
\left(\begin{array}{r}
(x)=\binom{x}{1}(3 x-2) \\
x-2=0 \\
x=2 \\
3 x-2
\end{array}\right)
$$

112 Find intersection Can Use substitution

$$
\begin{array}{ccc}
y=\frac{1}{2} & \frac{1}{2}=\frac{16}{x^{2}-4} & (6,)(-6,) \\
y=\frac{16}{x^{2}-4} & x^{2}-4=32 & y=\frac{16}{6^{2}-4}=\frac{16}{32}=\frac{1}{2} \\
x^{2}=36 & y=\frac{16}{(-6)^{2}-4}=\frac{16}{32}=\frac{1}{2} \\
\sqrt{2} & r & \\
x= \pm 6 &
\end{array}
$$

(b)
(c)

Roo rs
4 real roots
no complex roots

Factors
4 linear factor 3 No quads. factor

$$
\begin{aligned}
& 1110(i-3)^{2} \\
& (i-3)(e-3) \\
& i^{2}-3 i-3 i+9 \\
& k+2 \\
& -1-6 i+9 \\
& m
\end{aligned}
$$

$$
8-6 i
$$

$$
105 b
$$

$105 c$
$106 \quad y=x^{3}-9 x$
a) roots
b) Sketch

sketch

$$
y=x(2 x+5)(2 x-7)
$$

(11) be $(2 i-1)(3 i+1)$ C. $(3-2 \cdot)^{(2 \cdot+3)}$

Coming Up Over the next week: Find all roots for higher degree polynomials

Remember problem 8-102 from last class?

$$
\begin{gathered}
x^{3}-3 x^{2}+3 x-2=0 \\
(x-2)\left(x^{2}-x+1\right)=0
\end{gathered}
$$

$$
\begin{aligned}
& \text { Divin Dide } \\
& \text { Polynomials }
\end{aligned}
$$

so we canc.....

$$
\begin{array}{ll}
20 & x^{3}-3 x^{2}+3 x-2=0 \\
4 & (x-2)\left(x^{2}-x+1\right)=0
\end{array}
$$

from before

					4
	\times	$4 x^{3}$	$+6 x^{2}$	$-2 x$	-5
	\times				
B	$2 x$	$8 x^{4}$	$12 x^{3}$	$-4 x^{2}$	$-10 x$
	-3	$-12 x^{3}$	$-18 x^{2}$	$6 x$	15

$$
8 x^{4}+0 x^{3}-22 x^{2}-4 x+15
$$

The leading term goes into the upper left
The next term is the sum of the first diagonal. Continue for additional terms.

$$
\begin{aligned}
& \text { exan } 2 \frac{6 x^{3}+7 x^{2}-16 x+10}{2 x+5}=3 x^{2}-4 x+2 \\
& \frac{20}{5}=4 \\
& \frac{20}{7}=2 \frac{6}{7} \\
& 6 x^{3}+7 x^{2}-16 x+10
\end{aligned}
$$

$$
\frac{6 x^{3}+7 x^{2}-16 x+10}{2 x+5}=3 x^{2}-4 x+2
$$

or

$$
6 x^{3}+7 x^{2}-16 x+10=(2 x+5)\left(3 x^{2}-4 x+2\right)
$$

$$
2 x+5 \quad 3 x^{2}-4 x+2
$$

$$
\begin{gathered}
\frac{6 x^{3}+7 x^{2}-16 x+18}{2 x+5}=3 x^{2}-4 x+2+\frac{8}{2 x+5} \\
\frac{24}{7}=3 \frac{3}{7} \\
3 R 3
\end{gathered}
$$

2$p r a c+9$ ce Problems One will have a remainder
$\frac{x^{3}-9 x^{2}+10 x-2}{x-1}=$
$\left(x^{4}-6 x^{3}+18 x-5\right) \div(x-2)=$

$$
\begin{aligned}
& \begin{array}{l}
x^{3}-9 x^{2}+10 x-2 \\
x-1
\end{array} X^{2}-8 x+2 \sum_{\text {remainder }} \\
& x \left\lvert\, \begin{array}{|l|l|l|}
\hline x^{3} & -8 x^{2} & 2 x \\
\hline-1 & x^{2} & 8 x \\
\hline
\end{array}\right. \\
& x^{3}-9 x^{2}+10 x-2
\end{aligned}
$$

\square

