is done.

Then, once your solutions are turned in , pick up the Warm Up

Determine the quadratic function if its roots are $-1 \pm 3 i$

the alternative

$$
y=[x-\text { root }][x-\text { root }]
$$

$\square$

$$
\begin{aligned}
& y=[x-(-1+3 i)][x-(-1-3 i)] \ll \begin{array}{c}
\text { the } \\
\text { alternaliue }
\end{array} \\
& y=[x+1-3 i][x+1+3 i]
\end{aligned}
$$

$$
\begin{aligned}
& y=x^{2}+2 x+10
\end{aligned}
$$

$$
\begin{aligned}
& y=[x-(1+3 i)][x-(1-3 i)] \leftrightarrow 2 \text { the alternative } \\
& y=[x-1-3 i][x-1+3 i] \\
& \\
& y=
\end{aligned}
$$

Using completing the square, find the zeros of the quadratic function:

$$
f(x)=x^{2}-2 x+18
$$

$$
\begin{array}{ll}
x^{2}-2 x+18=0 & \\
\begin{array}{ll}
\text { root } \\
x^{2}-2 x & =-18
\end{array} & \begin{array}{l}
\text { equation } \\
x^{2}-2 x+1 \\
x^{2}-18+1
\end{array} \\
\sqrt{(x-1)^{2}}=\sqrt{-17} & \text { to show } \\
x-1= \pm i \sqrt{17} & \text { ti } \\
x=1 \pm i \sqrt{7} &
\end{array}
$$

(3) For $y=-2(x+1)^{2}(x-3)^{2}$ :
a) what would be leading term? $-2 x^{4}$
b) What is the degree ? 4
c) Orientation ( - Is the rights side down or up?
d) what is the and behavior? $\uparrow \uparrow$ (LD な $\downarrow \uparrow$

(4) The $x$-intercepts of a $2^{\text {nd }}$ degree polynomial. are $x=\frac{2}{3}$ and $x=5$. Find possible $y=\left(-x+\frac{2}{3}\right)(-x+5)$ quadratic function?

$$
\begin{array}{ll}
y=\left(x-\frac{2}{3}\right)(x-\sqrt{3}) & y=-\left(x+\frac{7}{3}\right) \\
y=\left(x-\frac{2}{3}\right)(x-5) & 3 x-2=0 \\
y=3\left(x-\frac{2}{3}\right)(x-5) \\
y=(3 x-2(x-5)
\end{array}
$$

Be prepared to turn in your notebook ot anytime over the next week.

Final Exam $\left[\begin{array}{c}\text { your next and } \\ \text { last test }\end{array}\right]$

| cha $_{6}^{6}$ | Ch. 8 |
| :---: | :---: |
| 7 |  |

$\left.\begin{array}{l}\text { MON } \\ \text { Tues }\end{array}\right\}$ June $17+18$

$$
30+90
$$

Which is bigger ???
-
$i^{2}$ or
$i^{\frac{2}{3}}$

HW Questions

87c rods $-2 \quad \sqrt{7}-\sqrt{7}$

$$
y=(x+2)(x-\sqrt{7})(x+\sqrt{7})
$$

$88 a \quad y=2 x^{2}+5 x+4 \quad \begin{aligned} & a=2 \\ & b=5\end{aligned}$

$$
\begin{array}{ll}
x=\frac{-(5) \pm \sqrt{(5)^{2}-4(2)(4)}}{2(2)} & \begin{array}{c}
c=4 \\
\text { Discriminate } \\
b^{2}-4 a c
\end{array} \\
x=\frac{-5 \pm \sqrt{-7}}{4} & \text { if negat we } 2 \text { complex } \\
x= & \text { if posive } 2 \text { reat } \\
& \text { if } 0 \\
& 1 \text { reop } \\
& \text { ind }
\end{array}
$$

$$
\begin{aligned}
& 3^{x}=17 \longrightarrow x=\log _{3} 17 \\
& \sqrt{\log 3^{x}}=\log 17 \\
& x \cdot \log 3=\log 17 \\
& x=\frac{\log 17}{\log 3}
\end{aligned}
$$

## Today

## Analyze Roots and Factors of Polynomials

Twill be on handouts

## Just watch

8-100 Based on the following graphs, how many real roots does each polynomial function have?
a.


2 real roots
b.


Graphs (a) and (b) above have been vertically shifted to create graphs (c) and (d) shown below. How many real roots does each of these new polynomial functions have?
a.


2 non-real roots
2 complex routs
2 imaginary
d.




Sketch a graph of a $3^{\text {rd }}$ degree function

- one with 1 x-intercept
- one with $2 \times$-intercepts
- once with 3 xintercets

Determine the \# of roots, and their type

$g(x)$ degree 3
b)

$f(x)$ will have 3 real roots (all single roots) therefore it has..
$f(x)=3$ linear factors

$$
f(x)=(L F)(L F)(L F)
$$

$g(x)$ will have therefore it has...

$$
(x+7)(x-1)^{2}
$$

2 real roots $\rightarrow 3$ linear factors

$$
\left(\begin{array}{l}
\text { single root) } \\
\text { I double }
\end{array}\right.
$$

c)

$k(x)$ degree 3
d)

$K(x)$ will have the fore it has...

$$
\begin{aligned}
& \text { the fore it has... } \\
& \mid \text { real root } \rightarrow \text { I pear factor }
\end{aligned}
$$

$$
y=
$$

$$
\begin{aligned}
& 2 \text { non-real } \underset{\text { roots }}{\substack{\text { neal }}} \rightarrow \mid \text { quadratic } \\
& \text { roots }
\end{aligned}
$$


$R(x)$ will have therefore it has...

2 real roots $\rightarrow 2$ linear factors
2 non-real roots $\rightarrow 1$ Qfactor




## 8-102 together

a. How many real solutions could $x^{3}-3 x^{2}+3 x-2=0$ have?


$$
\text { or } 3
$$






b. Check to verify that $x^{3}-3 x^{2}+3 x-2=(x-2)\left(x^{2}-x+1\right)$

b. Check to verify that $x^{3}-3 x^{2}+3 x-2=(x-2)\left(x^{2}-x+1\right)$

c. Find all of the solutions of $x^{3}-3 x^{2}+3 x-2=0$.

$$
x^{3}-3 x^{2}+3 x-2=(x-2)\left(x^{2}-x+1\right)
$$

How many real roots and how many non-real roots (complex)?
d. How many $x$-intercepts does $y=x^{3}-3 x^{2}+3 x-2$ have?


assignment

## 8....... 105-107, 111-112

Period 4
Make sure your name is on your notebook. Turn-it in before you leave today. Sticky note at beginning

