

$$y = \begin{bmatrix} x - (-1+3i) \end{bmatrix} \begin{bmatrix} x - (-1-3i) \end{bmatrix}$$

$$y = \begin{bmatrix} x + 1 - 3i \end{bmatrix} \begin{bmatrix} x + 1 + 3i \end{bmatrix}$$

$$x = \begin{bmatrix} x + 1 - 3i \end{bmatrix} \begin{bmatrix} x + 1 + 3i \end{bmatrix}$$

$$y = x^{2} + 2x + 10$$

$$y = x^{2} + 2x + 10$$

$$y = x^{2} + 2x + 10$$

$$y = \begin{bmatrix} x - (i + 3i) \end{bmatrix} \begin{bmatrix} x - (i - 3i) \end{bmatrix}$$

$$y = \begin{bmatrix} x - (i - 3i) \end{bmatrix} \begin{bmatrix} x - (i - 3i) \end{bmatrix}$$

$$x - (i - 3i) \begin{bmatrix} x - (i + 3i) \end{bmatrix}$$

$$x - (i - 3i) \begin{bmatrix} x - (i + 3i) \end{bmatrix}$$

$$x - (i - 3i) \begin{bmatrix} x - (i + 3i) \end{bmatrix}$$

$$y = (i - 3i) \begin{bmatrix} x - (i - 3i) \end{bmatrix}$$

$$y = (i - 3i) \begin{bmatrix} x - (i - 3i) \end{bmatrix}$$

$$y = (i - 3i) \begin{bmatrix} x - (i - 3i) \end{bmatrix}$$

$$y = (i - 3i) \begin{bmatrix} x - (i - 3i) \end{bmatrix}$$

$$y = (i - 3i) \begin{bmatrix} x - (i - 3i) \end{bmatrix}$$

$$y = (i - 3i) \begin{bmatrix} x - (i - 3i) \end{bmatrix}$$

 $\chi^2 - 2x + 18 = 0$ (00t equation $\chi^2 - 2\chi = -18$ expected to show = $\chi^{2}_{(-)} - \frac{2}{\chi} + \frac{1}{\chi} = -\frac{1}{8} + 1$ $\sqrt{(-)^{2}_{(-)}} = \sqrt{-17}$ $\frac{x-1}{X} = \frac{\pm i\sqrt{n}}{(\sqrt{n})^{\pm}} + \frac{i\sqrt{n}}{(\sqrt{n})^{\pm}} + \frac{1}{\sqrt{n}}$

The x-intercepts of a 2nd degree polynomial $Are x = \frac{2}{3}$ and x = 5. Find the possible $Y = \left(-X + \frac{2}{3}\right)\left(-X + 5\right)$ quadratic function? $y = (x - \frac{2}{3})(x - 5) \quad y = -(x + \frac{3}{3})$ $V_{T} = \left(X - \frac{2}{3}\right) \left(X - 5\right)$ 3x - 2 = 0 \mathbb{N} $y = 3\left(x - \frac{2}{3}\right)\left(x - 5\right)$ y = (3x - 2)(x - 5) -

Be prepared to turn in your notebook at anxtime over the next week.

$$\frac{87c}{y} = (x+2)(x-17)(x+17)$$

$$\frac{88a}{\chi} = \frac{4}{2x^2 + 5x + 4} \qquad x = 2$$

$$b = 5$$

$$c = 4$$

$$\chi = \frac{-(5) \pm (5)^2 - 4(a)(4)}{2(a)} \qquad \text{Discriminate}$$

$$b^2 - 4ax$$

$$\chi = \frac{-5 \pm \sqrt{-7}}{4} \qquad \text{if negative } 2 \text{ complex room}$$

$$\chi = \qquad \text{if postive } 2 \text{ real room}$$

$$\chi = \qquad \text{if } 0 \qquad | \text{ real prime}$$

• 93a
$$3^{x} = 17$$
 $2^{x} \times 109_{3}^{17}$
 $\sqrt{109} \ 3^{x} = 10917$
 $2 \cdot 1093 = 10917$
 $\chi = \frac{10917}{1093}$

Analyze Roots and Factors of Polynomials

Determine the # of roots, and their type

assignment 8..... 105-107, 111-112 algebraically Period 4 Make sure your name is on your notebook. Turn-it in before you leave today. Sticky note at beginning of ch.5