$$
\begin{aligned}
& \text { pick up } \\
& \text { the }
\end{aligned}
$$

 help

> Be prepared to turn in your class notebook anytime over the next week.
(1) What do baby parabolas drink?

Quadratic formula
ii) What do baby parabolas drink? \qquad
(2) $\underbrace{\sqrt{-1}=i \sqrt{i^{2}}=-1}_{\text {memorize }}$

$$
\begin{aligned}
& \frac{\text { Simplify }}{\sqrt{-7}}=i \sqrt{7} \\
& \sqrt{-30}=i \sqrt{30} \\
& \sqrt{-20}=i \sqrt{4} \sqrt{5}=2 i \sqrt{5} \\
& \sqrt{-50}=i \sqrt{5}=5 i \sqrt{2} \\
& \sqrt{-36}=i \sqrt{6}=6 i \\
& (5 i)(\sqrt{-1})=50 i=5 i=-5 \\
& \text { an } \quad .
\end{aligned}
$$

$$
i \sqrt{20} \quad \sqrt{-20}=i \sqrt{4} \sqrt{5}=2 i \sqrt{5}
$$

$$
i \sqrt{4} \sqrt{5} \quad i \sqrt{50} \quad \sqrt{-50}=i \sqrt{5} \sqrt{2}=5 i \sqrt{2}
$$

$$
i \sqrt{25 \sqrt{2}} \quad \sqrt{-36}=i \sqrt{36}=6 i
$$

(3) List each specific coefficient for the polynomial, a_{n} to a_{0}

$$
\begin{aligned}
& f(x)=x^{5}-3 x^{2}-6 \\
& a_{5}=1 \\
& a_{4}=0 \\
& a_{3}=0 \\
& a_{2}=-3 \\
& a_{1}=0 \\
& a_{0}=-6
\end{aligned}
$$

(4) Later in class you will learn a shortcut to create a quadratic function from its two non-real rears. To do so, you will need to add the two roots and multiply them.

First root: $2+i$ Second root: 2-i
a) Add the roots
b) multiply them

$$
\begin{aligned}
2+i+2-i & =4 \\
(2+i)(2-i) & =5
\end{aligned}
$$

$$
\begin{aligned}
& \text { practice } \\
& w / 0 \text { calculator) }
\end{aligned}
$$

$4+1$
(5) Find both the sum and the product of each pair (wa calculates)

$9-25 i^{2}$
$-4+i$ and $-4-i$

$16-(-1)$ $16+1$

$$
\begin{array}{cc}
\frac{\text { Sum }}{6} & \frac{\text { Product }}{34} \\
-8 & 17
\end{array}
$$

Some equations have imaginary solutions

$$
y=x^{2}-4 x+5
$$

$$
x^{2}-4 x+5=0
$$

should not have real solutions
(6) (Find the non-real roots of the following quadratic functions

$$
y=x^{2}-4 x+5
$$

$$
y=(x+5)^{2}+9
$$

root equation

$$
\begin{aligned}
& x^{2}-4 x+5=0 \\
& a=1 \\
& b=-4 \\
& c=5
\end{aligned}
$$

Quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x=\frac{-(-4) \pm \sqrt{\left.(-4)^{2}-4(1) 5\right)}}{2(1)}
$$

$$
a=1
$$

$$
b=-4
$$

$$
c=5
$$

$$
\begin{aligned}
& =\frac{4 \pm \sqrt{-4}}{2} \\
& =\frac{4 \pm 2 i}{2} \\
& =2 \pm i \sqrt{4} \\
& 2+i \quad 2 i
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(5)}}{2(1)} \\
&=\frac{4 \pm \sqrt{-4}}{2}=\frac{4 \pm 2 i}{2}=2 \pm i \\
& x=2 \pm i \text { are the two } \\
& \text { non-real roots }
\end{aligned}
$$

\therefore no x-intercepts

$$
\begin{gathered}
r_{0} \quad y=(x+5)^{2}+9 \\
r_{e a u a t i o n} \quad \text { i } \\
(x+5)^{2}+9=0 \\
(x+5)^{2}=-9 \\
\sqrt{ } \\
x+5= \pm \sqrt{-9} \\
x+5= \pm 3 i \\
x=-5 \pm 3 i
\end{gathered}
$$

Huestions

$72 \quad f(x)=x^{2}+7 x-9$
(a) $f(-3)$
(b) $f(i)$
(c) $f(-3+i)$

\square

70	$\frac{2 \pm \sqrt{-16}}{2}$
$-18-\sqrt{-25}$	$\frac{2 \pm 4 i}{2}$
$-18-\sqrt{25-(1)}$	$\frac{2(1 \pm 2 i)}{2}$
$-18-\sqrt{25} \cdot i$	$\frac{18-5 i}{}$
	$1 \pm 2 i$

$$
\text { (c) } \begin{aligned}
& 5+\sqrt{-6} \\
& 5+\sqrt{6}-1 \\
& 5+\sqrt{6} \cdot i \\
& 5+i \sqrt{6}
\end{aligned}
$$

74 Solve $(16)^{x+2}=(8)^{x}$

$$
(4 i)^{2}
$$

$$
\begin{aligned}
& \stackrel{d}{\vdots} \\
& (3 i)^{3}
\end{aligned}
$$

$71 b$

$$
\begin{aligned}
f(x) & =(x-3)^{2}+2 \\
x & =(y-3)^{2}+2 \\
(y-3)^{2} & =\sqrt{x-2} \\
y-3 & = \pm \sqrt{x-2} \\
f^{-1}(x) & =3 \pm \sqrt{x-2}
\end{aligned}
$$

Complex
Roots
also called

- Polynomials have roots, sometimes many.
- Sometimes the roots are real
sometimes those roots are non-real
- Non-real roots are also called "imaginary" or "complex" at times which is confusing

Non-real roots come in pairs. as you saw in the warm up

$$
\begin{gathered}
5+6 i \quad 5-6 i \\
3 \pm 7 i
\end{gathered}
$$

$$
0+8 i \quad \pm 8 i
$$

$$
0-89
$$

The vocabulary

$$
\text { example of degree } 2
$$

polynomial

Factors of Polynomials look like

$$
y=(x-r o 0 t)(x-r 00 t)
$$

Factors of Polynomials
look like

$$
y=(x-\operatorname{root})\left(x-\operatorname{root}_{x}\right)\left(e_{1}\right.
$$

can be real or non-real

$$
\begin{array}{cl}
5 & -13 \\
(x-5) & (x-13) \\
& (x+13)
\end{array}
$$

Aim Create a quadratic function given its non-real roots

Two non-realroots quadratic function
the longer way $y=(x-$ root $)(x-$ root $)$
the short cut $y=$

Given roots $7 \pm 4 i$ create a quadratic. function
long way $y=[x-(7+4 i)][x-(7-4 i)]$

$$
y=[x-7-4 i][x-7+4 i]
$$

$$
\text { standard form } \cdot g=x^{2}-14 x+65
$$

$$
y=x^{2}-14 x+65
$$

Shortcut

There is a link between the roots of and degree polynomial (in the form $y=x^{2}+b x+c$) and its
function in standard form.

It's not obvious at first
function
roots

$$
\begin{aligned}
& y=x^{2}-6 x+25 \\
& y=x^{2}-4 x+5<3 \pm \\
& 2 \pm i
\end{aligned}
$$

HINT:

It has to do with the sum and PRODUCT of the roots

$$
\text { shortcut } \quad 7+4 i \quad 7-4 i
$$

Sum
 Product $(7+4 i)(7-4)$

 $y=x^{2}-14 x+65$ $49-162^{2}$
 $49+16$
 65

To Create a quadratic function $x^{2}+b x+c$

the linear coefficient, b, is the opposite of the sum of the roots
the constant, c, is the product of the roots.

$0,3,-8$
$-6 \pm 2 i$

$$
B . B .
$$

Assignment
8.......87ac, 88, 93,94

Notebook Check

1. turn in your notebook

2. be sure your name is clearly visible ind in nod If turnining in a spiral, then have your name visible on top or inside the front cover.
3. Mark the beginning of Ch. 5 with a Post -It Note
