\qquad
\qquad
Notes ok (but try not to use them !)

1. Write a polynomial function, in factored form, which has single roots at $x=1,3$, and -1 and it passes through the point (4,30). Appropriate steps must be shown for full credit. [4 marks]
2. For the graph shown list all real roots and their nature (single, double, etc). Also List the number of complex roots, if any. [3 marks]

Write \# of real Root(s) and the number of associated factors in the function

Write \# of Non-real Root(s) and the number of associated factors in the function
3. Pfactice Simplifying without a calculator, the 4 following expressions. Show your work to verify that you can do them without a calculator. (yes, they can be done with a calculator). [4 marks]

$$
\begin{array}{l|l|l|l|l}
8-\sqrt{-36} & (2 i)^{2}(4 i) & (x-3 i)(x+3 i) & i^{17}
\end{array}
$$

4. Create a quadratic polynomial, in the form $f(x)=x^{2}+b x+c$ given its two roots:

Show your echnique. You should practice both the long and sho tcut methods. $8+5 i$ and $8-5 i$
5. Find the exact roots of $f(x)=x^{2}-2 x+2$

Show work. Simplify roots to $a \pm b i$ form and leave answers exact.
6. Practice sketching and labeling a graph of a possible polynomial function in factored form, without a calculator. Additional requirement: Your graph should not work (be mistaken) for a lower degree function. (lower than degree 5 in this case)

$$
f(x)=2 x(x-43)(x+70)(x+25)^{2}
$$

