8.3.1 Day 1 - Worksheet

Name: _____

1. For each of the equations below, state whether or not it is a polynomial function. If it is a polynomial function state its orientation, its degree, and list its coefficients (e.g., $a_2 = -3$) in decreasing order ending with a_0 . If it is not a polynomial function, then just continue on.

Function	Polynomial	Orientation	Degree	Coefficients
$f(x) = -4x^3 - 2x + 1$	yes / no	pos. / neg.		
g(x) = (x+6)(x-3)	yes / no	pos. / neg.		
$h(x) = 3301.4^x$	yes / no	pos. / neg.		

2. Algebraically find the roots of each polynomial function below. Show work algebraically.

$$h(x) = 16x^2 - 64 \qquad \qquad j(x) = x^3 + 12x^2 + 36x$$

3. Sketch the graph of $p(x) = (x+2)^2(x-2)$. Label all x- and y-intercepts on the graph.

4. Divide the Polynomials by using the "Box Method":

a).
$$\frac{6x^4 - 5x^3 + 10x^2 - 18x + 5}{3x - 1}$$

b).

$$(x-3)x^3 + x^2 - 14x + 3$$