\qquad

1. For each of the equations below, state whether or not it is a polynomial function. If it is a polynomial function state its orientation, its degree, and list its coefficients (e.g., $a_{2}=-3$) in decreasing order ending with $\boldsymbol{a}_{\mathbf{0}}$. If it is not a polynomial function, then just continue on.

Function	Polynomial	Orientation	Degree	Coefficients
$f(x)=-4 x^{3}-2 x+1$	yes / no	pos. / neg.		
$g(x)=(x+6)(x-3)$	yes / no	pos. / neg.		
$h(x)=3301.4^{x}$	yes / no	pos. / neg.		

2. Algebraically find the roots of each polynomial function below. Show work algebraically.

$$
h(x)=16 x^{2}-64 \quad j(x)=x^{3}+12 x^{2}+36 x
$$

3. Sketch the graph of $p(x)=(x+2)^{2}(x-2)$. Label all x - and y-intercepts on the graph.
4. Divide the Polynomials by using the "Box Method":
a). $\frac{6 x^{4}-5 x^{3}+10 x^{2}-18 x+5}{3 x-1}$
b).

$$
x - 3 \longdiv { x ^ { 3 } + x ^ { 2 } - 1 4 x + 3 }
$$

