
and the
new recording sheet
for Part B of Ch. 7

Given the parent function $f(x)=x^{2}$ carry out the following transformation.
"Vertically stretch by 4, horizontally shift right 3 units and up 1 unit."

Parent Function for a parabola: $\quad y=x^{2}$

General Equation:

$$
y=a(x-h)^{2}+k
$$

notes on 7.2.1

Tues-May 21 Closure 1
Wed-May 22 Part © Ch 7 Test

+ (NO calculator)

Thur-May 23 Part 2 - Ch 7 Test

HW and Recording Sheet for Part A of Ch. 7 Due Friday beginning of period
(includes yesterday's assignment but not today's)

HW Questions

HW Questions

(1) Without vsing a GDC or any notes, tind alre
exact value of:
a) $\cos \left(\frac{5 \pi}{4}\right)=\frac{-\sqrt{2}}{2}$
b) $\sin \left(-\frac{15 \pi}{6}\right)=-1$

$7-104$

a) Any angle ${ }_{\wedge}^{\text {that }}$ starts from $\frac{\pi}{3}$ where you add 2π any number of times.
in deg eos

$$
\begin{array}{rlrl}
60^{\circ}+360^{\circ} & =420^{\circ} & \text { or } & 60-360^{\circ}=-300^{\circ} \\
420+360^{\circ} & =780^{\circ} & & -300-360^{\circ}=-71 \\
780+360^{\circ} & =1040^{\circ} & & e+c \\
A+c & &
\end{array}
$$

$$
\begin{aligned}
& \theta=60^{\circ}+360^{\circ} n \\
& \theta=\frac{\pi}{3}+2 \pi n \text { (in radians) }
\end{aligned}
$$

b) See above

$$
\begin{aligned}
& \left.\sin \left(\frac{7}{3} \pi\right)=\frac{\sqrt{3}}{2}\right) \cos \left(\frac{7}{3} \pi\right)=\frac{1}{2} \\
& \text { tangent } \\
& \tan \left(\frac{7}{3} \pi\right)=\frac{\sin \left(\frac{4}{3} \pi\right)}{\cos \left(\frac{4}{2} \pi\right)}= \\
& \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\frac{\sqrt{3}}{2} \cdot \frac{2}{1}=\sqrt{3}
\end{aligned}
$$

$$
7-105
$$

a) $\sin \left(180^{\circ}\right)=0$
d) $\sin \left(510^{\circ}\right)=\frac{1}{2}$

e) $\cos \left(90^{\circ}\right)=0$

f) $\tan (-90)=\frac{\sin \left(-90^{\circ}\right)}{\cos \left(-90^{\circ}\right)}=\frac{-1}{0}=$
c) $\sin \left(-90^{\circ}\right)=-1$
\square

notes on 7.2.1
d) $100^{\circ} \times \frac{2 \pi}{\frac{2 \pi}{310^{\circ}}}=\frac{22 \pi}{36}=\frac{5 \pi}{9}$
e) $8100 \cdot \frac{2 \pi}{360^{\circ}}=\frac{9}{364} \cdot \frac{2 \pi}{4}=\frac{18 \pi}{2}$
f) $\frac{7 \pi}{2} \cdot \frac{360^{\circ}}{24}=630^{\circ}$

7-108
$f(x)=\frac{1}{2}(x+1)^{3}$

$x=\frac{1}{2}(y+1)^{3}$

$$
2 x=(y+1)^{3}
$$

tate cube root

$$
\begin{aligned}
& \sqrt[3]{2 x}=y+1 \\
&-1 \\
& y=\sqrt[3]{2 x}-1
\end{aligned}
$$

$$
\begin{array}{r}
7-109 f(x)=2 x^{2}-16 x+34 \\
\frac{f(x)}{2}=\underline{x^{2}-8 x}+17
\end{array}
$$

Add 16 to complete square

$$
\begin{aligned}
& \frac{f(x)}{2}=x^{2}-8 x+16+17-16 \\
& \frac{f(x)}{2}=(x-4)^{2}+1 \\
& f(x)=2(x-4)^{2}+2
\end{aligned}
$$

a) | several methods |
| :--- |
| can use pythag, Identity |
| $\sin ^{2} \theta+\cos ^{2} \theta=1$ |
| $\sin ^{2} \theta+\left(\frac{-12}{13}\right)^{2}=1^{2}$ |
| $\sin ^{2} \theta+\frac{144}{169}=1$ |
| $\sin ^{2} \theta=1-\frac{144}{169}$ |
| $\sin ^{2} \theta=\frac{25}{169}$ |
| $\sqrt{2}$ |
| $\sin \theta= \pm \frac{5}{13}$ |

$7-110$
a)
several methods can use Pythag, Identity

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

$$
\sin ^{2} \theta+\left(-\frac{12}{13}\right)^{2}=1^{2}
$$

$$
\sin ^{2} \theta+\frac{144}{168}=1
$$

$$
\sin ^{2} \theta=1-\frac{144}{164}
$$

$$
\sin ^{2} \theta=\frac{25}{169}
$$

$$
r r
$$

$$
\sin \theta= \pm \frac{5}{13}
$$

in Quadrant 3 sines are negative so $\sin \theta=-\frac{5}{73}$
(b)

$$
\begin{aligned}
& \tan \theta=\frac{\sin \theta}{\cos \theta} \\
& =\frac{\frac{-5}{13}}{\frac{-12}{13}} \\
& =\frac{-5}{13} \cdot \frac{-13}{12}=\frac{5}{12}
\end{aligned}
$$

III $\cos \theta=\frac{-12}{13}$
$\cos ^{2} \theta+\sin ^{2} \theta=1$

$$
\begin{gathered}
\left(\frac{-122}{13}\right)^{2}+\sin ^{2} \theta=1 \\
\frac{144}{169}+\sin ^{2} \theta=1 \\
\sin ^{2} \theta=1-\frac{144}{169} \\
\frac{169}{169}-\frac{144}{169}
\end{gathered}
$$

\square

Apply the fundamentals of Transformations to
Sine and Cosine functions

notes on 7.2.1
May 15, 2019

How would you shift the function up \mathbf{k} units?
How would you shift the function right \mathbf{h} units ?
How would you vertically stretch or shrink the function?

\square

handout

$$
\begin{aligned}
& \text { (A) Write an equation for the following } \\
& \text { transformation and sketch its } \\
& \text { graph. } \\
& \qquad y=\sin (x)
\end{aligned}
$$

A veritical shift, up 2 units \& vertically shrunk by 0.5

(B) $y=\sin (x)$

A reflection across the x-axis and a vertical shift down 2 units

(3) $Y=\cos (x)$, Vertically stretched by 1.5 and up 2

Sketch Artists

$$
\begin{aligned}
& \text { Aim: Sketch cyclic } \\
& \text { functions } \\
& \text { wo a calculator }
\end{aligned}
$$

\square

notes on 7.2.1
Verify on GDC

$$
B B
$$

1.

The Amusement Park has decided to imitate The Screamer but wants to make it even better. Their ride will consist of a circular track with a radius of 100 feet, and the center of the circle will be 50 feet ABOVE ground. It will be called the Screamer Plus. Passengers will board at the normal spot which will now be 50 feet above ground (riders will climb up stairs to board another words).

Write a function that relates the angle traveled from the starting point to the height of the rider above or below the ground. (HINT: Draw a diagram to help).

116-118, 120, 122-124
AND
take home LCQ which is due tomorrow at the start of class.

