

Well go over as many as you need.
\square

Exact Trig Values
Without a calculator, evaluate each trig function at the given angle (I recommend you make a separate drawing for each)

1. $\cos \frac{7 \pi}{6}$
2. $\sin \frac{3 \pi}{2}=-\sqrt{8} \frac{\mathbb{8}}{8}$
3. $\tan \frac{3 \pi}{4}$
. $\cos \frac{-2 \pi}{3}$

$(0,-11)$
4. $\sin \frac{11 \pi}{6}$
5.

$$
\tan (\pi)
$$

$$
=\frac{0}{-1}
$$

10. Without a calculator, solve for each angles) that makes the given equation true on the interval $[0,2 \pi]$.

$$
\sin \theta=\frac{\sqrt{2}}{2}
$$

$$
\cos \theta=-\frac{\sqrt{3}}{2} \quad G=\frac{5 \pi}{6} \quad\left[0,360^{\circ}\right]
$$

$$
\theta=\frac{\pi}{4}
$$

$\theta=\frac{7 \pi}{6}$

11. Draw a Unit Circle. Draw an rotation angele of around 100 degrees. Draw a line sement that represents the length of the the approximate value of $\sin \left(100^{\circ}\right)$. Eyeballing this segment, estimate the approximate value of $\sin \left(100^{\circ}\right)$ to the nearest 0.1

12. Deterinine the equatic your calculat
a)

b)

c)

d)

No calculator Sketching Practice
Sketch and label the following graphs
$f(\theta)=8 \sin (2 \theta)$ sketch I cycle, in degrees
$f(x)=15 \cos \left(\frac{x}{2}\right) \quad$ sketch 1 cycle, in radians

$$
H(t)=1000 \sin (5 t)+4000 \text { sketch I cycle }
$$

$$
f(\theta)=8 \sin (2 \theta)+
$$

$$
f(\theta)=15 \cos \left(\frac{x}{2}\right) \quad 15 \cos \left(\frac{1}{2} x\right)
$$

$$
f(\theta)=1000 \sin (5+)
$$

Graph to Equation

In your notes, write the equation for the following graphs.

$$
y=a \sin b(x-h)+k
$$

(B)

$$
\begin{aligned}
& \text { Per }=\pi \\
& \text { so } b=\frac{2 \pi}{\operatorname{Per}}=\frac{2 \pi}{\pi}=2
\end{aligned}
$$

$A=$

$$
\begin{aligned}
& \mathrm{A}= \\
& \mathrm{Per}=R 20^{\circ} \mathrm{b}=\frac{1}{2} \\
& \mathrm{~h}=
\end{aligned}
$$

$$
\mathrm{k}=2
$$

P
$=\cos \left(\frac{1}{8} x\right)+2$

$$
y=-4 \cos (2 x)
$$

(c)

$$
\begin{aligned}
& y=2 \sin (3 x) \\
& A= \\
& \operatorname{Per}=120^{\circ} b=\frac{360^{\circ}}{120^{\circ}}=3 \\
& h= \\
& k=
\end{aligned}
$$

$$
P_{e r}=\frac{\pi}{4}
$$

$$
\text { so } b=\frac{2 \pi}{p e r}=\frac{2 \pi}{\frac{\pi}{4}} \frac{\frac{2 \pi}{1}}{\frac{1}{4}}=\frac{2 \pi}{1} \cdot \frac{4}{\pi}=8
$$

$$
y=3 \cos (8 x)
$$

The Buffalo Problem

Use your sketching abilities
Use your analytic thinking abilities
Work in a cooperative spirit

No calculators allowed.

The population of water buffalo is given by the function

$$
P(t)=400+250 \sin (90 t)
$$

where $\boldsymbol{t}=$ number of years since the first population estimate was made
a) What was the initial estimate of the buffalo population?
b) What was the size after - 1 year ?

- two years?
c) Find the smallest population and when it first occurs.

$$
\begin{aligned}
\text { your best friend: Per } & =\frac{2 \pi}{b} \\
& \text { if in radeins }
\end{aligned}
$$

(A) Without using a calculator, identify the following for each of the two cyclic functions. Then sketch the graph.

Amplitude $=$

$$
y=2 \sin (x)+1
$$

Period $=$
Horizontal shift constant, $\mathrm{h}=$ the vertical shift constant, $\mathrm{k}=$

$$
\begin{array}{ll}
y=\frac{1}{2} \cos (2 x) & \begin{array}{l}
\text { Amplitude }= \\
\\
\text { Period }= \\
\text { Horizontal shift constant, } \mathrm{h}= \\
\text { the vertical shift constant, } \mathrm{k}=
\end{array} \\
\hline
\end{array}
$$

Amplitude $=$
Period $=$, so $b=$
Horizontal shift constant, h=
the vertical shift constant, $\mathrm{k}=$

$$
\begin{aligned}
& \text { Amplitude = } \\
& \text { Period }=\quad \text {, so } \mathrm{b}= \\
& \text { Horizontal shift constant, } \mathrm{h}= \\
& \text { the vertical shift constant, } \mathrm{k}=
\end{aligned}
$$

Amplitude $=$
Period $=\quad$, so $b=$
Horizontal shift constant, $\mathrm{h}=$ the vertical shift constant, $\mathrm{k}=$

Assignment

$$
\begin{aligned}
& 7 \ldots . .144-146,158-162,166 \\
& \quad \text { and finish the Buffalo Problem. }
\end{aligned}
$$

