# Check your solutions to yesterday's HW. 



## HW Questions

$$
\begin{aligned}
& \text { creck } \\
& \# 36
\end{aligned}
$$

8-36 where does $y=(x+3)^{2}-5$ cress $x$-axis? $\rightarrow$ ser $y=0$

$$
\begin{array}{ll}
(x+3)^{2}-5 & =0 \\
(x+3)^{2}=5
\end{array} \quad(-3+\sqrt{5}, 0) \text { and }(-3-\sqrt{5}, 0)
$$

$8-37$

$$
\begin{gathered}
f(x)=(x-74)^{2}(x+29) \\
(x-74)^{2}(x+29)=0 \\
\downarrow \quad \downarrow \quad \downarrow \\
x-74=0 \quad x+29=0
\end{gathered}
$$

$$
\begin{aligned}
& \text { ve pord } \\
& \text { zeproprop }
\end{aligned}
$$ pror

$$
\begin{aligned}
& x=74 \quad x=29 \\
& \text { nounced } \\
& \text { bore }
\end{aligned}
$$


(b) $(-3,0)\left(\frac{1}{2}, 0\right) \Rightarrow y=(x+3)\left(x-\frac{1}{2}\right)$

$$
\begin{aligned}
& y=x^{2}-\frac{1}{2} x+3 x-3 / 2 \\
& y=x^{2}+\frac{5}{2} x-3 / 2
\end{aligned}
$$

could also introduce stretch factav of

2 to get $y=2 x^{2}+5 x-3$
$8-39$
a) $P(x)=0.08 x^{2}+28 x$ degree 2
b) $y=8 x^{2}-\frac{1}{2} \times(5)+9$ degree 5
$5 x^{(3)}$
c) $f(x)=5(x+3)(x-2)(x+7)$ degree 3
d) $y=(x-3)^{2}(x+1)\left(x^{3}+1\right)$ degree

8-40 a) Prabolas are written as $y=a x^{2}$ (polynowial)
b) Exponentials, $y=2^{x}$, for axample (not)
c) cubics $y=2 x^{3} \quad$ (Polynomial- can be writon $\quad$ in form $y=a x^{n}$ )
d) Lines $y=3 x+2$ (Polynomlal)
e) cincles (NOT)

May 30, 2019


you were asked to write an equation of a polynomial in standard form and you were given two $x$-intercepts
$(5,0) \quad(-8,0)$ HOW would you begin?


May 30, 2019


## Warm Up

Find reasonable equations for each of the following polynomial functions.
a.

b.

c.


$$
y=(x+3) \times(x-2) \underset{y}{-2}=a(x+3) x^{3}(x-2) \quad\left(y^{a}=(x+2)^{2}(x-1)\right.
$$

Without using a graphing calculator, how can you check the accuracy of your equations? Were each of your equations accurate? If not, why do you think your equations) were not accurate?

May 30, 2019
c.


Now calculate the $y$-intercept

$$
y=-2(x+2)^{2}(x-1)
$$

$$
\begin{gathered}
y=-(2)^{2}(-1) \\
y=-4(-1) \\
y=4
\end{gathered}
$$

## today

Create polynomial equations that represent all points on the graphs
(not just the x-intercepts )


## To be used later in class

Suppose the person next to you wrote the equation

$$
y=\frac{(x+3)(x+1)(x-2)^{2}}{\text { to represent the graph at right. }}
$$

1. Explain how you can decide how well the equation represents the graph. What can you do to the equation to make it a better fit for the graph? What equation would fit better?

## ARE THE INTERCEPTS ENOUGH?



PICK a point on the $\operatorname{araph}(x, y)$ and plug it in.

2. Before you figured it out, you could have written the polynomial
 for this graph as $P(x)=a(x+3)(x+1)(x-2)^{2}$ What if you did not have a graphing calculator, but you were told that the graph goes through the point $(1,16)$ ? How could you use that information to determine the exact equation? Once you have decided on a method with your team, try it. How can you test the accuracy of your equation?


May 30, 2019



1. What degree polynomial represents the portion of the roller coaster represented by the graph at right?
2. What are the roots? $X=2,3,0$
3. Find an exact equation for the polynomial that will generate the curve of the track.

$$
\begin{aligned}
y & =a(x-2)^{2}(x-3)(x \\
-.2 & =a(2.5-2)^{2}(2.5-3)(2.5) \\
-.2 & =a(.5)^{2}(-.5)(2.5) \Rightarrow-.2=-.3125 a
\end{aligned}
$$

4. What is the deepest point of the roller coaster's tunnel?

$$
a=.64
$$

$$
\begin{aligned}
& y=.64(x-2)^{2}(x-3)(x) \\
& \text { plug in } x=.5
\end{aligned}
$$

4. What is the deepest point of the roller coaster's tunnel?


WI HCD「ウir" $\therefore \times \bar{x}=4$



16:1=1

$\approx \begin{gathered}181 \text { feet } \\ \text { below ground }\end{gathered}$

be prepared to show your
process on the doc cam.



do the following questions in your notes
$50 \sim 51 \sim 53$

$8-51$
Armando $y=3(x+1)^{4}(x-4)$
Does it work?
Check Addrional Point

$$
(-2,-18)
$$

$$
\begin{aligned}
&-18=3(-2+1)^{4}(-2-4) \\
&-18=3(-1)^{4}(-6) \\
&-18=-18 \\
& y e s
\end{aligned}
$$

8-52 New addtional point ( $1,-36$ )

$$
\begin{aligned}
& \frac{\text { origival }}{y=3(x+1)^{2}(x-4)} \\
& -36=3(1+1)^{2}(1-4) \\
& -36=3(2)^{2}(-3) \\
& -36=-36
\end{aligned}
$$

$$
\begin{aligned}
& \text { Armando } \\
& y=3(x+1)^{6}(x-4) \\
&=3(1+1)^{4}(1-4) \\
&=3(2)^{4}(-3)
\end{aligned}
$$

$$
-36 \neq
$$



## 8....54-58, 59b, 60,62

$$
\begin{aligned}
& a_{1}= \\
& a_{0}=
\end{aligned}
$$



