

$$
\begin{aligned}
& \text { Pick Up the } \\
& \text { Green, pink, and Purple } \\
& \text { Solutions } \\
& \text { to check HW }
\end{aligned}
$$

Turn in the

Pink HW Packet with all 6 assignments

Everyone pick up two pieces of tape for the Polynomial Notes

Have your 2 Polynomial graphs from yesterday out and ready

Leading term: X^{5}
degree: 5 Lead corf. \#turns 4

Left End Behavior
As $x \rightarrow-\infty, y \rightarrow-\infty$
Right End Behavior

$$
\text { As } x \rightarrow+\infty, y \rightarrow+\infty
$$

$\downarrow \uparrow$

Leading term: X^{5} degree: 5 \#turns 4

Left End Behavior
$A s x \rightarrow-\infty, y \rightarrow-\infty$
Right End Behavior
As $x \rightarrow+\infty, y \rightarrow+\infty$

$$
\begin{aligned}
& P_{5}(x)=-0.1 x(x+4)^{3} \quad \text { Leading term: }-x^{4} \\
& \text { degree: } 4 \\
& \text { \#turns : } 1 \text { and } 1 \text { inflection } \\
& \text { Left End Behavior } \\
& \text { As } x \rightarrow-\infty, y \rightarrow-\infty \\
& \text { Right End Behavior } \\
& A_{5} x \rightarrow+\infty, y \rightarrow-\infty
\end{aligned}
$$

$p_{6}(x)=x^{4}-9 x^{2}$

Leading term: X^{4}
degrees: 4
\#turns: 3
Left End Behavior As $x \rightarrow-\infty, y \rightarrow+\infty$
Right End Behavior

$$
\text { As } x \rightarrow+\infty, y \rightarrow+\infty
$$

$$
P_{7}(x)=0.2 x(x+1)(x-3)(x+4)
$$

Leading Term: 0.2×4 degree: 4 \#turns: 3
$\frac{\text { Left End Behavior }}{\text { As } x \rightarrow-\infty, y \rightarrow+\infty}$
Right End Behavior

$$
\frac{\text { Right End Behavior }}{\text { As } x \rightarrow+\infty, y \rightarrow+\infty}
$$

Keep your graphs out. We'll use them a bit later.

$P_{4}(x)=(x+3)^{2}(x+1)(x-1)(x-5)$

Leading term: X^{5}
degree: 5 lead lon
\#turns 4

Left End Behavior
As $x \rightarrow-\infty, y \rightarrow-\infty$
Right End Behavior
As $x \rightarrow+\infty, y \rightarrow+\infty$ $\downarrow \uparrow$
$\underset{\text { Aim }}{\underline{\Xi}}$

Polynomial Characteristics

Pick Up the Small note sheet from class.
(you can tape it into your own notes later).

A. Degree

The single largest exponent of a polynomial determines the degree, n. For example: $\ln y=2 x^{8}+100 x^{2}-1677 x+5$, the degree is \qquad

standard form

B. Leading Term

If the leading coefficient of a polynomial is positive, then the polynomial graph will have a OSSA ive orientation. Otherwise, the graph will have a negative orientation.

A look back at the
Graphing assignment you did yesterday.

Look at the right arrow on one of them.

C. Orientation

If the polynomial has a positive orientation, then right end points q If the polynomial has a negative orientation, then right end points \downarrow

D. End Behavior

An odd degree polynomial has \qquad end behavior (opposite ending y-values) An even degree polynomial has \qquad end behavior (same ending y-values)

$$
P_{8}(x)=x^{4}-4 x^{3}-3 x^{2}+10 x+8
$$

E. Vocabulary

If $\mathbf{5}$ is an intercept of the graph of $f(x)$, then 5 is a ZerO of the function, $f(x)$ and 5 is a roots of the equation $f(x)=0$

Reminder:

Be sure you can use your graphing calculator to find an x-intercept....

Many polynomials in standard form make it hard to identify clear x-intercepts and your calculator can at least find an appoximate one for you. In this case, you would be expected to use the "zero" function to find them.

$$
\begin{gathered}
\text { Sketch } \\
\text { Artists } \\
1.0
\end{gathered}
$$

only use the calculator between your ears.

$$
\begin{align*}
& P(x)=7(x+10)(x+7)(x-12) \\
& \left(x^{2}+\text { min }\right)(x-12) \\
& x \text {-intercepts }-10-7 \quad 12 \\
& \text { leading term } 7 x^{3} \tag{degree 3}
\end{align*}
$$

orientation (t)
end behavior $\downarrow \uparrow$

$Q(x)=-2 x(x+6)(x-8)$
x-intercepts 8
leading term
degree
orientation $\left(-2 x^{3}\right.$
end behavior \uparrow
ie. What is the maximum number of roots a polynomial of degree 3 can have?

$$
y=x^{3} \quad y=\left(\langle-1)^{3} \quad y=(x-1) x+2 x-5-5\right) \quad y=(x)(x+1)^{2}
$$

2 Questions for your group
(1) What is the maximum number of roots a polynomial of degree \mathbf{n} can have?

Can a polynomial of degree \boldsymbol{n} have fewer than \boldsymbol{n} roots?
yes

$$
\frac{3}{x}+\frac{2}{x+1}
$$

$$
\begin{aligned}
& \frac{3 \cdot x}{x} \frac{(x+1)}{1}+\frac{2 \cdot x}{x+1} \frac{(x+1)}{1}=6 \cdot \frac{x(x+1)}{1} \\
& 3(x+1)+2 x=6 x(x+1)
\end{aligned}
$$

Assignment
 8..... 17-22, 24

