

A. Determine the amplitude and period of each function.
a) $y=\sin 4 x$
b) $y=\cos 5 x$
$A=1 \quad \operatorname{Per}=\frac{\pi}{2}$
C.) $y=4 \cos x$
d) $y=-2 \sin x$
A) $y=3 \sin \frac{2}{3} x$
f) $y=-4 \cos 5 x$

A, Determine the amplitude and period of each function.
a) $y=\sin 4 x$

$$
\begin{aligned}
& 2 \pi \\
& \frac{2 \pi}{4}=\frac{\pi}{2}
\end{aligned}
$$

b) $y=\cos 5 x$

$$
A=1 \quad \operatorname{Per}=\frac{\pi}{2}
$$

$$
A=1 \quad \operatorname{Per}=\frac{2 \pi}{5}
$$

C.) $y=4 \cos x$
d) $y=-2 \sin 1 x$
$A=4 \quad \operatorname{Per}=2 \pi$

$$
A=2 \quad \operatorname{Per}=2 \pi
$$

(A) $y=3 \sin \frac{2}{3} x$
f) $y=-4 \cos 5 x$
$A=3 \quad$ Per $=3 \pi$

$$
A=4 \quad \operatorname{Per}=\frac{2 \pi}{5}
$$

\square

i)

j)

- Graph $y=3 \sin \left(\frac{1}{2} \theta\right)$

Part $2 \begin{aligned} & \text { Homework } \\ & \text { from textbook 7... } 130,132-133,134 b\end{aligned}$

- do un separate paper
- Staple underneath this sheet

The CPM Amusement Park has decided to imitate The Screamer but wants to make it even better. Their ride will consist of a circular track with a radius of 100 feet, and the center of the circle will be 50 feet under ground. Passengers will board at the highest point, so they will begin with a blood-curdling drop. Write a function that relates the angle traveled from the starting point to the height of the rider above or below the ground.

7-130. Claudia graphed $y=\cos \theta$ and $y=\cos \left(\theta+360^{\circ}\right)$ on the same set of axes. She did not see any difference in their graphs at all. Why not? Homework Help \&

7-132. Find the x - and y-intercepts of the graphs of each of the following equations. Homework Help

$\frac{y-\ln t}{\operatorname{set} x}=0$
b. $y+2=\log _{3}(x-1)$

$$
y+2=\log _{3}(0-1)
$$

$$
y=\log _{3}(x-2
$$

$$
2=\log _{3} x
$$

$$
3^{2}=x
$$

$$
\begin{aligned}
& \text { a. } y=2 x^{3}-10 x^{2}-x \quad y-n+(0,) \\
& 0=2 x^{3}-10 x^{2}-x
\end{aligned}
$$

May 17, 2019

7-134. Change each equation to graphing form. For each equation, find the domain and range and determine if it is a function. Homework Help
a. $y=-2 x^{2}-x+13$
b. $y=-3 x^{2}-6 x+12$

133 COST OF MOVE \$9.50 increasing $4^{\prime \prime}$ per year multiplier: $\begin{aligned} & 100^{\prime \prime}+4^{\circ}= 104^{\prime \prime} \\ & \mu \\ & 1.0^{4}\end{aligned}$

Doubled
cost will be \$ 19.00

$$
y=a b^{x}
$$

Today
Analyze Transformations of Periodic Functions (using all 4 Parameters)

The big idea
 In order to model sine (or cosine) waves that occur in real situations, we need to be able to position the wave anywhere in the coordinate plane.

Thus, we have a need to make both scale changes and translations to our waves.

What is the relationship between the period of a sine graph and the value of b in its equation?

NOTES what do we know about

$$
y=\sin (b x) ? ?
$$

b tells the number of cycles in 2π

$$
\begin{aligned}
& \text { Period (length) }=\frac{2 \pi}{b} \\
& b=\frac{2 \pi}{\text { Period }}
\end{aligned}
$$

b tells the number of cycles in 2π or 360°

$$
\begin{aligned}
& \text { Period (length) }=\frac{2 \pi}{b} \\
& b=\frac{2 \pi}{\text { Period }}
\end{aligned} \quad \begin{aligned}
& \text { Per }=\frac{360^{\circ}}{b} \\
& b=\frac{360^{\circ}}{\text { Period }}
\end{aligned}
$$

A, Determine the amplitude and period of each function.
a) $y=\sin 4 x$
b) $y=\cos 5 x$

$$
\frac{2 \pi}{6} \quad \frac{2 \pi}{4}=\frac{\pi}{2}
$$

c) $y=4 \cos x$
d)

$$
y=-2 \sin x
$$

$$
P=2 \pi
$$

A) $y=3 \sin \frac{2}{3} x$
f) $y=-4 \cos 5 x$

$$
\frac{2 \pi}{\frac{2}{3}}=\frac{2 \pi}{1} \cdot \frac{3}{2}=3 \pi
$$

Sketch Artists

| NO |
| :---: | :---: |
| Calculator \rightarrow describe \rightarrow sketch \rightarrowcheck
 with
 graphing
 calculator |
| Nalculator Test |

May 17, 2019

(3) $y=\sin \left(1 t-\frac{\pi}{2}\right)$

$$
\mathrm{A}=1
$$

$\mathrm{b}=1 \quad$ Per $=2 \pi$
$\mathrm{h}=\frac{\pi}{2}$ Right $\mathrm{k}=0$

May 17, 2019

$\mathrm{A}=1$

$$
A=4
$$

$$
\operatorname{Per}=\pi b=2
$$

$$
h=0
$$

$$
y=\cos \left(\frac{1}{2} x\right)+2
$$

(c)
(D)

A =
Per $=\quad b=$
$\mathrm{h}=$
$\mathrm{k}=$

May 17, 2019

