

Answers

$$
\begin{aligned}
\frac{1}{2} & =\frac{x \sqrt{2}}{\sqrt{2}} \\
\frac{\sqrt{2}}{2} \quad x & =\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{\sqrt{2}}{\sqrt{4}}
\end{aligned}
$$

May 01, 2019

Questions on HW

$$
7-18
$$

(a). $\log (1)=n$
(b)

$$
10^{n}=1
$$

$$
n=0
$$

$$
\begin{aligned}
& \log _{0}\left(10^{3}\right)=n \\
& 10^{n}=10^{3} \\
& n=3
\end{aligned}
$$

$$
\frac{\log 1}{\log 10}
$$

(c) $\quad 10^{\log (4)}=m$
(d) $\int^{10^{\frac{2}{2 \log (4)}}=n} \begin{aligned} & \text { (convert to log form }\end{aligned}$

$$
\begin{aligned}
\log _{0} n & =\log _{10} 4 \\
i & =4
\end{aligned}
$$

$$
\begin{aligned}
& 3 \log _{0}(4)=\log _{10}(n) \\
& \log _{i}\left(4^{3}\right)=\log (n)
\end{aligned}
$$

$$
\begin{aligned}
4^{3} & =n \\
n & =64
\end{aligned}
$$

$7-19$							
	x	-2	-1	0	1	2	3
y	3	4	5	undefined	7	8	

(a) Appears to be a linear function but there is a hole in the graph at $x=1$ (not an asymptote.)
b) the linear relationship is $y \Longrightarrow x+5$

$$
f(.9)=5.9
$$

$f(1.1)=6.1 \quad$ No asymptote
c) $f(x)=\frac{x^{2}+4 x-5}{x-1} \Rightarrow \frac{(x-1)(x+5)}{x-1}=x-5$

The complete graph is a line,$y=x+5$, with a hole at $(1,6)$
$7-20$
a. Exponential is appropriate for population growth or decay
b) $y=a b^{x}+c, c_{0} 0000$

$$
\underset{\substack{\text { Hears } \\ \text { afford } \\ 2000}}{(\underbrace{4}_{y=a, ~}, 720001)}(\underbrace{(2,70379)}_{y=60000}
$$

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& x^{2}=43^{2}+35^{2}-2(43)(35) \cos 50^{\circ} \\
& x^{2}=1139.209 \ldots \\
& x=33.752 \text { foot }
\end{aligned}
$$

NOT A RIGHT Triangle so Sol Cah'Toa is not useable
Given info is SAS so Law of Cosines works
(b)

cross mastiply $x\left(\sin 43^{\circ}\right)=15\left(\sin 25^{\circ}\right)$

$$
\begin{aligned}
& x\left(\sin 48^{\circ}\right)=15(\sin 2) \\
& x=\frac{15 \sin 80^{\circ}}{\sin 41^{\circ}}=9,663 \text { feet }
\end{aligned}
$$

7-23

$$
\begin{aligned}
& x+y+z=40 \\
& y=x-5 \\
& x=2 z
\end{aligned}
$$

substitute to get

$$
x+(x-5)+z=40
$$

substitute $x=2 z$ to get

$$
\begin{gathered}
2 z+(2 z-5)+z=40 \\
2 z+2 z-5+z=40 \\
5 z=45 \\
z=9
\end{gathered}
$$

Summary and Ramifications
 from the Ferris Wheel Activity

Have one person trom your group:

Pick up your Ferris Wheel data and graph from the last class.
Then explain what we did to anyone who was absent! If absent, you do not have to make up this particular activity, but you do need to understand it!

We created a mew parent function called de:

The Sine Function

The Sine function is the connection between the heights above (and below) the midline AND the angle of rotation (θ)

θ
\uparrow the Greek letter θ
theta

1. We collected periodic data (heights around the circle) 2.We plotted those heights against the various angles of rotation.

2. We collected periodic data (heights around the circle)
3. We plotted those heights against the various angles of rotation.

We then graphed the function $h(\theta)=\sin \theta$ and it fit pretty well.

Understand the relationship of the function

$$
f(\theta)=\sin (\theta)
$$

A α	B β	$\bar{\Gamma}$	$\Delta \delta$	E ε	Z ζ	H η	Q θ
ة̀.¢ φ	防co	удица	${ }_{\text {®̇̀̀т }}$	Eviov	зит α	गira	өinco
apha	beta	gamma	delta	epsion	zeta	eta	theta
a	b	g	d	e	z	è	th
a:]	[b]	[g]	[d]	[e]	[zd/dz]	[:]	$\left[\mathrm{t}^{\text {b }}\right]$
I 1	K к	$\Lambda \lambda$	M μ	$\mathrm{N} v$	$\Xi \xi$	0 o	$\Pi \pi$
iörce	ккллла		${ }_{\mu \nu}^{\nu}$	vō	zei		леì
iota	kappa	lambda	mu	nu	xi	omikron	pi
i	k	1	m	,	ks/x	-	
[isi]	[k]	[1]	[m]	[n]	[ks]	[0]	[p]
P ρ	$\Sigma \sigma / \mathrm{S}$	T τ	ru	$\Phi \varphi$	$\mathrm{X} \chi$	$\Psi \Psi$	$\Omega \omega$
${ }_{\text {¢ }}^{\text {¢ }}$	оітих	${ }_{\text {тaj }}$	*uviov	$\varphi{ }_{\text {ei }}$	$\chi_{\text {zei }}$	廿ei	
tho	sigma	tau	upsion	phi	chi	psi	omega
r/h	${ }^{\text {s }}$	1	uy	$\mathrm{ph}^{\text {ph }}$	khch	${ }^{\text {ps }}$	$\stackrel{\circ}{\circ}$
[r]	[s/z]	[t]	[yyy]	$\left[p^{\text {b }}\right]$	$\left[k^{\text {b }}\right]$	[ps]	[0:]

May 01, 2019

May 01, 2019

May 01, 2019

The height rototation angle above(or below) the axis
is

$$
\begin{aligned}
& f(\theta)=\sin \theta \\
& \sin \theta=\frac{\text { opp }}{h y p}
\end{aligned}
$$

May 01, 2019

In todays activily 8

Definition $f(\theta)=\sin (\theta)$
$f(\theta)$ is the height above/below the midline as a function of the angle of rotation, θ.
(in a circle with radius = 1)

For the next several weeks you will be given problems that refer to the screamer.

Notes

If the Screamer broke down when you were 51 feet above ground, what was the angle of rotation when that happened?

May 01, 2019

Assignment:

$$
724-27,29-30,32
$$

