8.1.1 Notes

An Introduction to Polynomials

Monomial - One term Ex: 5×3 Constant - a number (no variable) Ex: 3 or -2 Polynomial - More than one term

Ex:
$$\chi^2$$
 + 2x+ 7 - 3 χ^4

More Vocabulary

The monomials that make up a polynomial are called the $\underline{+erms}$ of the polynomial.

In the polynomial $x^2 + 2x + x + 4$, the monomials 2x and x can be combined because they are ______Ke____evens____. The result is $x^2 + 3x + 4$.

The polynomial $x^2 + 3x + 4$ is a <u>trinomal</u> because it has 3 unlike terms.

A polynomial such as $5y^3 + y^2$ is a <u>bornial</u> because it has 2 unlike terms.

The <u>degree</u> of a polynomial is the degree of the monomial with the greatest degree. For example, the degree of $x^2 + 3x + 4$ is 2 and the degree of $5y^3 + y^2$ is 3.

Example 1: Which of the following are polynomials? If it's a polynomial, state the degree.

4

<u>Classifying Polynomials</u>: We classify polynomials by the **number of terms** and the **degree**. Complete the chart below.

Polynomial Example	Degree	Name using Degree	Number of Terms	Name using Number of Terms
6	\bigcirc	Constant	l	monomial
<i>x</i> +3	1	Linear	2	binomial
$3x^2$	2	Quadratic	l	monomial
$2x^3 - 5x^2 - 2x$	3	Cubic	3	trinomial
$x^4 + 3x^2$	4	Quartec	2	binomial
$-2x^5 + 3x^2 - x + 4$	5	Quentic	4	polynom al of Y ferms

More Vocabulary

Standard Form - A polynomial is written in standard form when

- the terms are arranged by degree in descending number order
- all coefficients are real numbers
- all exponents are non-negative integers

Using the example $7x^3 + x - 2x^5 + 3$ In *standard form* this would be written as $-2x^5 + 7x^3 + x + 3$ The **leading term** is $-2\chi^5$ The **leading coefficient** is $-2\chi^5$ The **leading coefficient** is $-2\chi^5$ **Example 2:** Write each polynomial in standard form and fill in the blanks below.

a. $\frac{12x^2 + 9x}{2} = 4\chi^2 + 3\chi$ b. $5x^2 - x^4 + 6x$ Standard form: $-\chi^4 + 5\chi^2 + 6\chi$ Standard form: $4\chi^2 + 3\chi$ Leading term: $4\chi^2$ Leading coefficient: _____ Leading coefficient: Degree: ____ Degree: Classify by degree: Classify by degree: Quadratec Classify by number of terms: Classify by number of terms: Bromial