5.0 - 5.1 Notes

An Introduction to Polynomials

Vocabulary

More Vocabulary

The monomials that make up a polynomial are called the _____________________________ of the polynomial.

In the polynomial $x^2 + 2x + x + 4$, the monomials 2x and x can be combined because they are _______. The result is $x^2 + 3x + 4$.

The polynomial $x^2 + 3x + 4$ is a $\frac{1}{100}$ because it has 3 unlike terms.

A polynomial such as $5y^3 + y^2$ is a <u>polynomial</u> because it has 2 unlike terms.

The <u>degree</u> of a polynomial is the degree of the monomial with the greatest degree. For example, the degree of $x^2 + 3x + 4$ is 2 and the degree of $5y^3 + y^2$ is 3.

Monomials

Not Monomials

Example 1: Which of the following are polynomials? If it's a polynomial, state the degree.

a)
$$x^2 - 6x + 2x^3 + 3$$

yes, deg = 3

b)
$$x^6 - 4x^3 - \frac{2}{x^3}$$

c)
$$(2x-8)(x-4)^3$$
 d) $3-\sqrt{x}$
 $(2x-8)(x-4)(x-4)(x-4)$ No $(2x-8)(x^3+\cdots$

<u>Classifying Polynomials:</u> We classify polynomials by the **number of terms** and the **degree**. Complete the chart below.

Polynomial Example	Degree	Name using Degree	Number of Terms	Name using Number of Terms
6	\bigcirc	Constant	(monomial
x+3	1	Linear	2	binomial
$3x^2$	2	Quadrate	l	monomial
$2x^3 - 5x^2 - 2x$	3	Cubic	3	trinomial
$x^4 + 3x^2$	4	Quartec	2	binomial
$-2x^5 + 3x^2 - x + 4$	5	Quentic	4	polynomPal of 4 terms

More Vocabulary

Standard Form - A polynomial is written in standard form when

- the terms are arranged by degree in descending number order
- all coefficients are real numbers
- all exponents are non-negative integers

Using the example $7x^3 + x - 2x^5 + 3$

In standard form this would be written as $-2x^5 + 7x^3 + x + 3$

The **leading term** is $-2x^5$

The **leading coefficient** is _______

The **degree** is _____

Example 2: Write each polynomial in standard form and fill in the blanks below.

a.
$$\frac{12x^2 + 9x}{3} = 4\chi^2 + 3\chi$$

Standard form: $\frac{4\chi^2 + 3\chi}{}$

Leading term: 4x2

Leading coefficient:

Degree:

Classify by degree: Quadratic

Classify by number of terms:

b.
$$5x^2 - x^4 + 6x$$

Standard form: $-x^4 + 5x^2 + 6x$

Leading term: — X

Leading coefficient:

Degree: 4

Classify by degree: \(\text{\lambda} \text{\lambda} \text{\lambda} \text{\lambda} \text{\lambda}

Classify by number of terms:

Operations with Polynomials

Example 3: Given
$$\begin{cases} f(x) = x^2 - 3x + 1 \\ g(x) = 4x + 5 \end{cases}$$

Find
$$f(x) + g(x)$$
 and $f(x) - g(x)$

Addition

$$f(x) + g(x)$$

$$(X^2-3x+1)+(4x+5)$$

$$\chi^2 - 3\chi + 1 + 4\chi + 5$$

Subtraction

$$f(x) - g(x)$$

$$(X^2 - 3 \times + 1) - (4 \times + 5)$$

$$\chi^2 - 3x + 1 - 4x - 5$$

Example 4: Given

$$f(x) = x^2 + 5x - 1$$
$$g(x) = 3x - 2$$

Find $f(x) \cdot g(x)$ and $f(x) \div g(x)$

Multiplication $f(x) \cdot g(x)$ $3x^3 + 13x^2 - 13x + 2$

Division
$$f(x) \div g(x) = \frac{f(x)}{g(x)}$$

$$\frac{x^2 + 5x - 1}{3x - 2}$$

$$f(x) = 4x + 2$$
$$g(x) = 4x - 1$$

Find the following.

Addition

$$f(x)+g(x)$$

$$(4x+2)+(4x-1)$$

$$4x+2+4x-1$$

$$8x+1$$

Multiplication

$$f(x) \cdot g(x)$$

$$(4x+2)(4x-1)$$

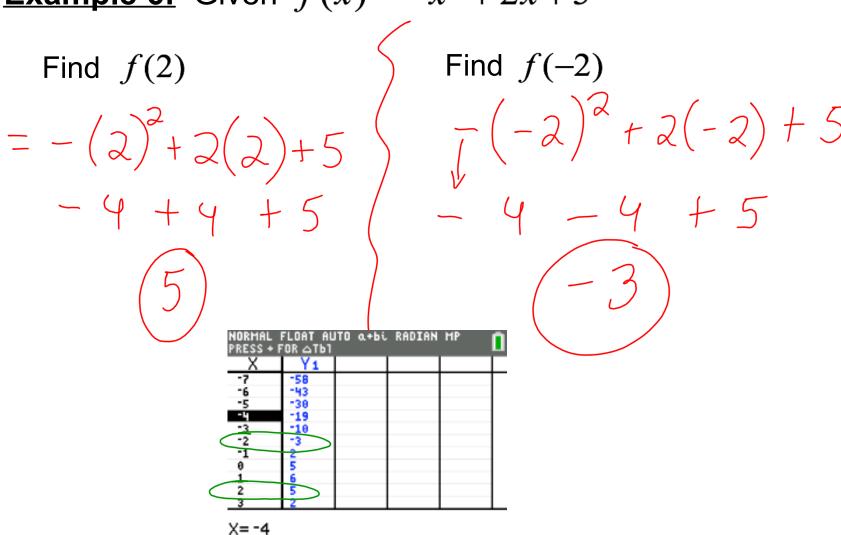
$$16x^{2}-4x+8x-2$$

$$(16x^{2}+4x-2)$$

Subtraction

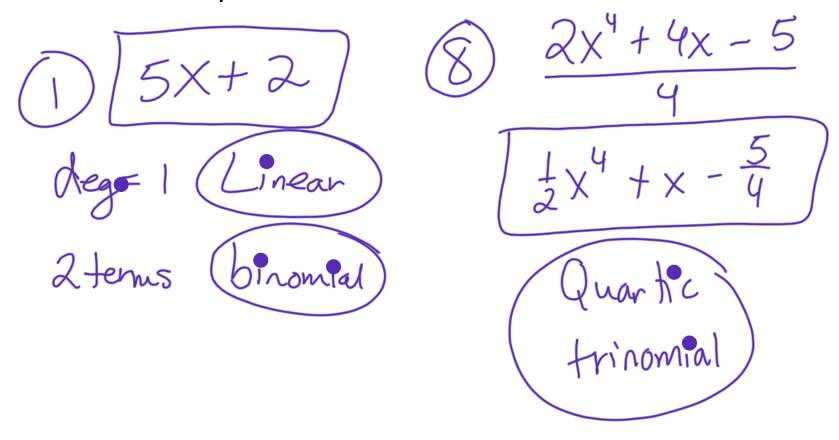
$$f(x)-g(x)$$

$$(4x+2)-(4x-1)$$


$$4x+2-4x+1$$
3

Division

$$f(x) \div g(x) = \frac{f'(x)}{g(x)}$$


$$\frac{4\chi + 2}{4\chi - 1}$$

Example 6: Given $f(x) = -x^2 + 2x + 5$ Type $f_n Y_1$

Homework: 5.0 - 5.1 worksheet (1 - 9, 21 - 24)

Below are two problems from the HW worksheet.

