

Questions

1. Remember Kendra from yesterday? You know, the person that let the hot chocolate cool down to room temperature at 68° ?

After 1 minute the temperature was down to 109.6° and after 3 minutes it dropped down to 94.624°. Create an exponential function that models the situation.

$$
(1,1096) \quad(3,94.624)
$$

$$
y=a b^{x}+c
$$

$$
y=a b^{x}+c
$$

$$
\frac{a b^{3}}{a b b^{1}}=\frac{26.624}{41.6}
$$

Anus be patine

After 1 minute the temperature was down to 109.6° and after 3 minutes it dropped down to 94.624°. Create an exponential function that models the situation.
2. How long, in minutes, will it take to cool the drink down to almost room temperature, say 70° ? $70=52(.8)^{x}+68$ $-68-68$
$\Omega=5 \alpha(.8)^{x}$

$$
2 / 52=(.8)^{x}
$$

$\frac{2}{52}=(.8)^{x^{\bullet}}$
$x=\log _{0.5}(2 / 52)$
$X=\frac{\log ^{2}(2 / 52)}{\log (.8)}$
≈ 14.6
3. Solve the equation $\frac{5}{3}(1.5)^{x}=100$

$$
\begin{gathered}
5(1.5)^{x}=300 \\
1.5^{x}=60
\end{gathered}
$$

convert to log form

$$
\begin{aligned}
& x=\log _{1.5}(60) \\
& x=\frac{\log _{g}(60)}{\log (65)} \approx 10.098
\end{aligned}
$$

$$
\log \left(1.5^{x}\right)=\log (60)
$$

$$
x \cdot \log (18)=\log (60)
$$

$$
x=\frac{\log (60)}{\log (1.5)}=
$$

4. Use log properties (from your notes or your reference sheet) to expand the statements

$$
\begin{gathered}
\log \left(\frac{2 x}{3}\right) \\
\substack{\text { quotient } \\
\text { prop }} \\
\log ()-\log () \\
\log (2 x)-\log (3) \\
\swarrow\rangle \\
\log (2)+\log (x)-\log (3)
\end{gathered}
$$

5. Use log properties to solve the equations

$$
\begin{aligned}
& \log (5) \nleftarrow 7 \overrightarrow{\log (x)}=1000 \\
& \log (x+1)=\log (4 x+5) \\
& x+1=-4 x+5 \\
& 1=3 x+5 \\
& -4=3 x \\
& \log _{1}\left(5 \cdot x^{7}\right)=1000 \\
& \text { base } 10 \\
& 10^{1000}=5 x^{7} \quad x \\
& x=\sqrt[7]{10^{1000}} \\
& \text { because } \\
& \log (x+1) \\
& \text { must by } \geq 0
\end{aligned}
$$

6. Triple Dog Dare You Challenge

Use "Completing The Square" to solve the quadratic equation: $3 x^{2}-4 x-2=0$ And attempt to keep things in fractional values.

Worksheet 6.2.3

1. An exponential function, with asymptote $y=12$, passes the appropriate exponential function.

$$
\begin{aligned}
& \underset{-12}{18}=a b^{1}+12 \quad 32,25=a b^{4} \pm_{-12}^{12} \\
& 6=a b \\
& 20.25=a b^{4} \\
& 4 a=\frac{6}{b}
\end{aligned}
$$

2. Use \log properties to solve each equation.
a) $\log x+\log 8=2$
condense
$\log (8 x)=2$
b) $\quad-6 \log _{3}(x-3)=-24$ divide

$$
3^{4}=
$$

$$
\begin{aligned}
& 10^{2}=8 x \\
& x=\frac{100}{8}=12.5
\end{aligned}
$$

c) $\underbrace{\log x+\log 7}=\log 37$

$$
\log (7 x)=\log (3 T)
$$

d) $\log (-2 a+9)=\log (7$

$$
\text { so } 7 x \text { must be equal to } 3 T
$$

$$
\begin{aligned}
& 1 \\
&-2 a+9= \\
&+4 a \\
& 2 a+9= \\
& 2 a=
\end{aligned}
$$

$$
\begin{aligned}
7 x & =37 \\
x & =\frac{37}{7}
\end{aligned}
$$

Convert the \log expression $\log _{2} 30$ to one with base 8

$$
\begin{aligned}
& \left.\log _{2}(30)=\frac{\log _{2}(30)}{\log _{\operatorname{cose} 2)}(0)}=\frac{\log _{8}(30)}{\log _{8}(2)}\right]
\end{aligned}
$$

5) Solve each equation. Leave each answer exact in terms of base 10 AND round to 3 , Oo places. can solve by converting to \log form or by tat
a) $3^{b}=17$

$$
b=\log _{3}(17)
$$

$$
=\frac{\frac{\log (17)}{\log (3)}}{22.579}
$$

$$
\begin{aligned}
& \text { b) } 5 \cdot 18^{6 x}=26 \\
& \text { divide } \\
& 18^{6 x}=\frac{26}{5} \\
& \log ^{\log \left(18^{6 x}\right)}=\log (260 / 5) \\
& \operatorname{lox} \cdot \log (18)=\frac{\log (26 / 5)}{\log (26 / 5)} \\
& x=\frac{1}{6} \cdot \frac{\log (18)}{}
\end{aligned}
$$

c) $16^{n-7}+5=24$

$$
16^{n-7}=19
$$

$$
-5-5
$$

$$
n-7=\log _{16}(19)
$$

$$
n=\log _{16}(19)+
$$

$$
n=\frac{\log (19)}{\log (16)}+
$$

a) The quadratic formula
b) Completing

$$
\begin{aligned}
a=1 \\
b=-4 \\
c=1
\end{aligned} \quad x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(1)}}{2(1)}, \quad \begin{aligned}
& a \\
&=\frac{4 \pm \sqrt{12}}{2} \leftarrow \sqrt{42}=\sqrt{3} \\
&=\frac{4 \pm 2 \sqrt{3}}{2} \\
&=2 \pm \sqrt{3}
\end{aligned}
$$

7) Simplify $\frac{a^{2}}{a+5}+\frac{10 a+25}{a+5}$

$$
\begin{aligned}
& \frac{a^{2}+10 a+25}{a+5} \\
& =\frac{(a+5)(a+5)}{a+5} \\
& =a+5
\end{aligned}
$$

$$
\text { and } \begin{aligned}
\begin{array}{cc}
\frac{x^{2}}{x-y}-\frac{2 x y-y^{2}}{x-y} & x-y \\
\frac{x^{2}-\left[2 x y-y^{2}\right]}{x-y} & -y\left[\frac{x^{2}-x y}{-x y} \sqrt[y^{2}]{ }\right. \\
\downarrow & \frac{(x-y)(x-y)}{x_{y}^{2}}-x y-x y \\
\frac{x^{2}-2 x y+y^{2}}{x-y}
\end{array} & =x-y \\
& =x-y
\end{aligned}
$$

8) Find the algebraic inverse

$$
\left.\begin{array}{ll}
p(x)=3\left(x^{3}+6\right)-5 \\
y=3\left(x^{3}+6\right)-5 \\
\text { reverse } \\
x=3\left(y^{3}+6\right)-5 \\
+5
\end{array}\right) \quad \begin{aligned}
& y^{3}+6=\frac{x+5}{3} \\
& \begin{array}{l}
3\left(y^{3}+6\right)=x+5 \\
\quad \text { divide }
\end{array} \\
& y=\sqrt[3]{\frac{x+5}{3}-6}
\end{aligned}
$$

M Naturual Logs

Ch. Review for
next Monday's Test
Grade Il students report directly to A-1, A-2
[return here with Mr. Katsamura]
FRI Start Ch. 7

After school $\rightarrow M$ Naturual LogS

ch. Review for
next Monday's Te
Grade Il students rope
to A-1, A-2
[return here with Mr.
$\underset{\substack{\text { I } \\ \text { Ill be hel ere } \\ \text { lose }}}{ } \rightarrow$ FRI Start Ch. 7

Compound Interest Formula: Future value of money is $\mathrm{FV}=\mathrm{PV}\left(1+\frac{r}{n}\right)^{n t}$
Where ri: annual interest rate, as a decimal, t :\# of years, n :\#times interest is compounded per year

1) Use the compound interest formula:

Suppose you invest your $\$ 5,000$ savings to save for a car. You find a bank that pays 5.8% annual interest. Find out how much you would be in your account 7 years from now if you bank pays you interest compounded quarterly. ($n=4$)

$$
F V=P V\left(1+\frac{r}{n}\right)^{n t} \quad \text { or } \quad F=P\left(l+\frac{r}{n}\right)^{n t}
$$

3) Repeat once more, but this time assume compounding daily ($n=365$)

Compound Interest Formula
Invest ${ }^{\# \#} 5,000$
for 7 years
at 5.8%
compound interest
quarterly

$$
K=4 \longrightarrow K=12 \longrightarrow K=365 \longrightarrow K=\infty
$$

the higher the " n "
the larger the multiplier but.....
the increase starts to slow down.

| $\left(1+\frac{1}{n}\right)^{n}$ | TL-84 Plus Silver Edition
 texas Instruments |
| :---: | :---: | :---: |
| As $n \rightarrow \infty$ | |
| $\left(1+\frac{1}{n}\right)^{n} \rightarrow e$ | 2.718281828 |

$$
\begin{aligned}
& \text { Add to Your Reference } \\
& \text { Sheet } \\
& F=P\left(1+\frac{r}{n}\right)^{n t} \longrightarrow F=P e^{r t} \\
& \text { same }
\end{aligned}
$$

4) Now find the final balance if the bank uses continuous compounding.

$$
\begin{aligned}
F & =P \cdot e^{r t} \\
& =5000 e^{.058 \cdot 7}
\end{aligned}
$$

Aim

Solve exponential equations that have the natural base, e

etc.

Top 4 REASONS WHY $f(x)=e^{x}$ is kNown AS the Exponential Function
\#4 $f(x)=e^{x}$ has special calculus properties that simplify many calculations
ling logarithms to save Newton's Law of Cooling

$$
\frac{T(t)-T_{a}}{T_{0}-T_{a}}=e^{-k t}
$$

Radioactive half-life

$$
P(t)=P_{0} e^{-k t}
$$

\#3 e is considered to be the natural base.
\#2 $e>1$ so $f(x)=e^{x}$ is a growth function
and the number one reason why $f(x)=e^{x}$
is THE natural exponential function
\#1 Leonharod Euler introduced the notation and he could call it what he wanted to call it!

$$
y=e^{x}
$$

has an inverse which is called the natural log function.
inverse

$$
f(x)=e^{x}
$$

$$
f^{1}(x)=\log _{2} x
$$

$$
f^{-1}(x)=\ln (x)
$$

C is so prevalent out in the real world its logarithm gets its very own notation

$\ln x$
:() :
(:)

has mathematics
invented or
discovered

$200 \mathrm{B.C} \pm$
$1500^{\prime} \mathrm{s}$

Was mathematics invented or discovered?
π
$200 B C \pm$
i
1500's

Solve Natural Log Equations
Solve each equation. Check your answers.
$\ln (x)=0.1$
thunk $\log _{e}(x)=0.8$

Convert to
exponential form
$\begin{aligned} x & =e^{0.1} \\ & =1.11\end{aligned}$

$$
\begin{aligned}
& \ln \left(\frac{x+2}{3}\right)=12 \\
& \text { bace is } e \\
& e^{12}=\frac{x+2}{3} \\
& 3 e_{\text {exx }}^{12}=x+2 \\
& x=3 e^{12}-2
\end{aligned}
$$

$$
\begin{aligned}
& \ln 5-\ln (2 x)=1 \\
& \ln \left(\frac{5}{e x}\right)=1_{\pi_{\text {expononi }}} \\
& \text { base } \int \downarrow \begin{array}{c}
\text { convert } \\
\text { to exp. forn }
\end{array} \\
& e=\frac{5}{2 x} \\
& 2 x \cdot e=5 \\
& x=\frac{5}{2}
\end{aligned}
$$

Shortcut
$\log (10)$

$$
\ln (e)
$$

and expon. equations with
base $\boldsymbol{e} \quad$ Solve for x

An initial investment of $\$ 200$ is now valued at $\$ 245.25$. The interest rate is 6% compounded continuously. How long has the money been invested?

$$
\begin{aligned}
A & =P e^{r t} \\
245.25 & =200 e^{.06 t}
\end{aligned}
$$

Assignment

Worksheet 6242

