

Warm Up
(1) Convert $\log _{6}(60)=t$
(2) Solve $3.26^{x+1}=99$
to exponential form
[shows exact answer in terms flog base is 6 bose io and approx. to

The log statement
produces an export, t

$$
\begin{aligned}
& \text { So } \\
& 6^{t}=60 \\
& \text { or } \\
& 60=6^{t}
\end{aligned}
$$

$$
\begin{gathered}
(x+1) \cdot \log (3.26)=\log (99) \\
x+1=\frac{\log (99)}{\log (3.26)} \\
x=\frac{\log (99)}{\log (3.26)}-1 \\
x \approx 2.89
\end{gathered}
$$

(3) Watch the pattern develop as your teacher [Mr. ©] converts $\rightarrow \log _{8}(3)=\frac{\log (3)}{\log (8)}$ or $\frac{\log _{7}(3)}{\log _{7}(8)}$
$\rightarrow \log _{5}(x)=\frac{\log (x)}{\log (5)}$
$\rightarrow \log _{n}(700)=\frac{\log (700)}{\log (n)}$
$\rightarrow \log _{\text {base }}$ (input) $=\frac{\log \text { (input) }}{\log (\text { base })}$
This leads to the change of base formula which is:

$$
\log _{a}(b)=
$$

This is called the

 change of base formula $\log _{a}(b)=\frac{\log (b)}{\log (a)}$ which, in fact, can be converted to any baseThis is called the
change of base formula

$$
\log _{a} b=\frac{\log b}{\log a}=\frac{\log _{b} b}{\log _{n} a}
$$

which, in fact, can be converted to any base
(4) Find this formula on your reference sheet.
(5) Now add to your own notes.

Log Properties: If $\boldsymbol{y}=\boldsymbol{b}^{\boldsymbol{x}}$, then $\boldsymbol{x}=\log _{b} \boldsymbol{y} \quad$ also...... $\quad \log _{b} x^{n}=\boldsymbol{\rho} \log _{b} x$

$$
\begin{gathered}
\log _{b}(m)+\log _{b}(n)=\log _{b}(m n) \quad \log _{b}(m)-\log _{b}(n)=\log _{b}\left(\frac{m}{n}\right) \\
\log _{b}(m)=\frac{\log m}{\log b}
\end{gathered}
$$

$$
\log _{b}(m)=\frac{\log m)}{\log (b)}
$$

This is called the

change of base formula

$$
\log _{a} b=\frac{\log b}{\log a}=\frac{\log _{n} b}{\log _{n} a}
$$

which, in fact, can be converted to any base

Lastly, change the following log expression to one with base 5

$$
\log _{3} 4=\frac{\log _{5} 4}{\log _{5} 3}
$$

HW Questions
Answer
$103 a$

$$
\begin{aligned}
& x=-3 \\
& y=5 \\
& z=10
\end{aligned}
$$

6-72 Find a quadratic in the form $y=a x^{2}+b x+c$ that passes through the throe points.

$$
\begin{array}{llll}
(1,5) & 5=a(1)^{2}+b(1)+c & \rightarrow \text { II } 5=a+b+c \\
(3,19) & 19=a(3)^{2}+b(3)+c & \rightarrow \text { 目 } 19=9 a+3 b+c \\
(-2,29) & 29=a(-2)^{2}+b(-2)+c & \rightarrow \text { III } 29=4 a-2 b+c
\end{array}
$$

[II) $19=9 a+3 b+c$
(I) $5=a+b+c$

Subtract $14=8 a+2 b$

III $29=4 a-2 b+c$
II $.5=a+b+c$
subtract $24=3 a-3 b$
(A) $14=8 a+2 b \xrightarrow{3} 42=24 a+6 b$
(B)

$$
24=3 a-3 b \underbrace{}_{2}
$$

$48=6 a-6 b$

$$
90=3 a
$$

$50 \ldots a=3$

$$
5=a+b+c
$$

$$
\begin{aligned}
& 42=24(3)+6 b \\
& 42=72+6 b \\
& -30=6 b \\
& \text { so } b=-5
\end{aligned}
$$

$$
5=3+(-5)+c
$$

$$
5=-2+c
$$

$$
c=7
$$

$$
y=3 x^{2}-5 x+7
$$

97

$$
\begin{array}{lll}
\log (x)=0 & 10^{0}=x & 1 \\
\log (x)=1 & 10^{1}=x & 10 \\
\log (x)=2 & 10^{2}=x & 100
\end{array}
$$

Use properties of logs to simplify log expressions

Why?
because log equations can get more complex

$$
5 \cdot \log _{3}(x)-\log _{3}(2 x)=14
$$

Tape or Write into your notes?
Logarithm Properties
The following definitions and properties hold true for all positive $m \neq 1$.

Definition of logs:
Product Property:
Quotient Property:

Power Property:

$$
\log _{m}(a)=n \text { means } m^{n}=a
$$

$$
\log _{m}(a \cdot b)=\log _{m}(a)+\log _{m}(b)
$$

$$
\begin{aligned}
& \log _{m}\left(\frac{a}{b}\right)=\log _{m}(a)-\log _{m}(b) \\
& \log _{m}\left(a^{n}\right)=n \cdot \log _{m}(a)
\end{aligned}
$$

Take notes as we do
109 together

b. $\log _{2}(M)+\log _{3}(N)$

Cant
(base is not the same)

$$
\begin{aligned}
& \frac{\log (M)}{\log (2)}+\frac{\log (N)}{\log (3)} \\
& \log _{m}(a \cdot b)=\log _{m}(a)+\log _{m}(b)
\end{aligned}
$$

c. $\log (k)+x \log (m)$

$$
\begin{gathered}
\log (k)+\log \left(m^{x}\right) \\
\log \left(k \cdot m^{x}\right)
\end{gathered}
$$

d. $\frac{1}{2} \log _{5} x+2 \log _{5}(x+1)$

$$
\begin{aligned}
& \log _{5}\left[x^{\frac{1}{2}} \cdot(x+1)^{2}\right] \\
& \log _{5} x^{\frac{1}{2}} \cdot(x+1)^{2} \\
& \quad \sqrt{x} \\
& \quad \log _{m}(a \cdot b)=\log _{m}(a)+\log _{m}(b)
\end{aligned}
$$

e. $\log (4)-\log (3)+\log (\pi)+3 \log (r)$

$$
\frac{\underbrace{\log (4)-\log (3)+\log (\pi)+\log \left(r^{3}\right)}}{\log \left(\frac{4}{3} \pi\right)+\log \left(r^{3}\right)}+\log \left(r^{3}\right)
$$

$$
\log \left(\frac{4}{3} \pi r^{3}\right)
$$

$$
\log _{m}(a \cdot b)=\log _{m}(a)+\log _{m}(b)
$$

$$
\log _{m}\left(\frac{a}{b}\right)=\log _{m}(a)-\log _{m}(b)
$$

f. $\log (6)+23 \log (10)$

Next week - State Testing

- All Grate Il
- I was to meet Essential skills requirement and this is the only free option.
- No new lessons during class MoN, Tue, Wed.
\& There will be review assignments [to prepare for next test]
- In comp. labs A1, A2

Grade II
students
Laptops \rightarrow familiar with Calculators
https://oaksportal.org/users/students.stml

Use the sample test to help you ta your best on OSAS Online.

Announcements
Equation Editor Tutorial
Added: January 4, 2017

Assignment

6. -.-.-41b, 113, 114a, 115, 122ab

7...... 163
\square

