IF there is a late start, skip the graphs of log functions until tomorrow, the review day. This will leave time for the LCQ.

Questions on homework

(2) Is the inverse of $g(x)$ a function.
(hint: Graph ON $G D C)$

数 Texas Instruments
Dr- ヨuInv Y1■

(3) $f(m)=\frac{m}{10}-30$

$$
g(m)=2 \pi \sqrt{\frac{m^{2}}{980}}
$$

$$
f(950)=\frac{950}{10}-30
$$

find $g(f(950))$
$2 \pi \sqrt{\frac{\frac{m}{10}-30}{980}}$

$$
=1.618
$$

(4) Convert to an equivalent form
a) $z=\log _{7}(x)$

b) $6^{m}=1800$

April 09, 2019

Find the inverse equation for $y=\sqrt[3]{\frac{x}{4}}+7$.
Show your work.

Exponential Form

Logarithmic Form

a.

$$
y=5^{x}
$$

b.
c.
$8^{x}=y$
d.
$A^{K}=C$
e.
f.

$$
\begin{gathered}
\mathrm{K}=\log _{\mathrm{A}}(\mathrm{C}) \\
\log _{1 / 2}(\mathrm{~K})=\mathrm{N}
\end{gathered}
$$

$$
y=\log _{7}(x)
$$

8^{x}	$=y$
$\mathrm{~A}^{\mathrm{K}}$	$=\mathrm{C}$

4. Evaluate each expression without a calculator (LCQ coming soon on this)

$$
\begin{array}{ccc}
\log _{2} 8=x & \log _{5} 125=x & \log _{36}(?)=\frac{1}{2} \\
2^{x}=8 & S^{x}=125 & 36^{\frac{1}{2}}=? \\
x=3 & x=3 & \sqrt{36}=6 \\
\log _{2} 8=3 & \log _{5} 125=3 & 2=6
\end{array}
$$

6. Think back to y our days in Geometry. Find the value of x.

$x \sqrt{2}=$ hyp

$$
\begin{gathered}
x^{2}+x^{2}=h y p^{2}=h x^{2 x^{2}}=h y p
\end{gathered}
$$

b. Is the graph below a function? Is it's inverse a function?

b. Is the graph below a function?

Is it's inverse a function?

(5)

$$
\begin{array}{ll}
(10)^{3 x}= & (10)^{x-8} \\
3 x & =x-8 \\
2 x=-8 & 10^{3(-4)}=10^{-4.8} \\
x=-4 & 10^{12}=10^{12}
\end{array}
$$

(76) (a) $x^{2}+7 x+8=0$
(b) $(x+2)^{2}=4$

Factor
(c) $5 x^{2}-x-7=0$

Quad Farmula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a r}}{2}
$$

complete square

TEST INFORMATION SHEET

ON BAGK OF WARM UP

Aim \#1 today

Finding inverses of log

 and expon. functions
To find the inverse of an exponential function:

$$
f(x)=2^{x} \xrightarrow[\substack{\text { averse } \\ \text { reverse } \\ x \text { and } y}]{\text { Averse }} \xrightarrow[\substack{\text { Convert to } \\ \text { log form }}]{\substack{\text { Change to } \\ \text { graphing form }}}
$$

A similar process is used
if you start with a log function
inverse is

$$
\begin{aligned}
y= & \log _{6}(x) \\
& \text { switch } \\
& x \operatorname{y} \\
& x=\log _{6}(y)
\end{aligned}
$$

April 09, 2019

$$
\begin{aligned}
& \text { (d) } y=5^{2 x} \\
& \text { swith } x^{8-y}=5^{2 y} \\
& 2 y=\log _{5} x \\
& y=\frac{\log _{5} x}{2}
\end{aligned}
$$

Challenge: Find the algebraic inverse of

If $y=b^{x}$ $y=3(2)^{x}-10$
then $x=\log _{b}(y)$

$$
\left(\begin{array}{l}
x=3(2)^{y}-10 \\
x+10=3 \cdot 2^{y} \\
\frac{x+10}{3}=2^{y}
\end{array}\right.
$$

\square

- Features of Log Graphs in the form $f(x)=\log _{b} x$
(1) Their appearance

Range $-\infty<y<\infty$
(2) Log functions are defined only when bases are $0<b<1$ or $b>1$

$$
\begin{aligned}
& y=\left(\frac{3}{4}\right)^{x} \\
& y=\log _{\frac{3}{4}}(x) \\
& \text { exp.decay } \\
& \log \operatorname{dec} y
\end{aligned}
$$

(3) Their graphs have a single vertical asymptote (equation: $x=0$)
(4) The x-intercept is $(1,0)$

$$
\begin{aligned}
\log _{b} x & =y \\
b^{y} & =x
\end{aligned}
$$

Test Conditions

Option A: Everyone can use their Reference Sheet

Option B: If you cap your score at 80%, then you can use one piece of 8.5 by 11 inch paper (both sides) with as many notes as you want. Paper must be attached to your test when you turn it in.

Tests should be taken in one sitting. If you start a page of a test in one period, then you must finish it in that same period.

$$
\text { April 09, } 2019
$$

85-87, 91, 92bd, 97, 103

do 88 if you want practice with that type of question.

