

etch and clearly label the graph of $f(x)=1.3(2)$ for $-2 \leq x \leq 3$ on the t of axes shown below.

b) sketch and label the graph of
$y=$

$$
\begin{aligned}
& f(x)-1 \\
& (0)=\frac{n}{4}
\end{aligned}
$$

find n

$$
1.3=\frac{17}{4}
$$

(3) $0=x^{2}+4 x-11 \quad$ by Completing the

$$
\begin{aligned}
0+4 & =\frac{x^{2}+4 x+4}{2}-11 \\
4 & =(x+2)^{2}-11 \\
(x+2)^{2} & =\sqrt{15} \\
x+2 & = \pm \sqrt{15}
\end{aligned}
$$

Solve using Completing The Square
4

$$
\begin{aligned}
& \frac{0}{3}=\frac{3 x^{2}+\frac{18}{3} x-\frac{7}{3}}{0+9=x^{2}+6 x+9-\frac{7}{3}} \\
& \frac{9+\frac{7}{3}}{1}=(x+3)^{2} \\
& \sqrt{(x+3)^{2}}=\sqrt{\frac{34}{3}} \\
& x+3= \pm \sqrt{\frac{34}{3}}
\end{aligned}
$$

$$
\frac{27}{3}+\frac{7}{3}
$$

$6-80-83,85 b, 87 b d$
$6-80$ (1) $x+2 y-z=-1$
I will
(B) $2 x-y+3 z=13$

Eliminate the y's!!
(c) $x+y+2 z=14$
(B) $\frac{1^{\text {st }} \text { pair }}{2 x-y+3 z}=13$
$22^{\text {nd Pair }}$
(c) $x+y+2 z=14$
(A) $x+2 y-z=-1 \rightarrow \begin{aligned} & x+2 y-z=-1 \\ & 4 x-2 y+4 z=26\end{aligned}$
(B) $2 x-y+3 z=13 \rightarrow \frac{4 x-2 y+4 z=26}{5 x+5 z=25}$
I. $-3 x+5 z=27$

II
(I) $3 x+5 z=27$ 隹 $-3 x-5 z=-27$
(I)

$$
\begin{aligned}
& 5 x+5 z=25 \rightarrow 5 x+5 z=25 \\
& 2 x=-2 \\
& x=-1 \\
& 3 x+5 z=27 \\
& 3(-k)+5 z=2 T \\
& -5+5 z=27 \\
& 5 z=30 \\
& z=6 \\
& \text { (A) } x+2 y-z=-1 \\
& -1+2 y-(6)=-1 \\
& \begin{array}{l}
-7+2 y=\frac{-1}{+3} \\
+7
\end{array} \\
& 2 y=6 \\
& y=3 \\
& x=-1 \quad y=3 \quad z=6 \\
& \text { or }(-1,3,6)
\end{aligned}
$$

$$
\begin{gathered}
(-1,10)(0,5)(2,7) \\
-y-5-7 \\
y=a x^{2}+b x+c
\end{gathered}
$$

(土) $10=a(-1)^{2}+b(-1)+c$
(I) $5=a(0)^{2}+b(0)+c \leadsto$
(1) $7=a(2)^{2}+b(2)+c$

$$
(-1,10) \quad(0,5) \quad(2,7)
$$

(A) $10=a(-1)^{2}+b(-1)+c \quad 10=a-b+\frac{\overline{4}}{5}$
(B) $5=a(0)^{2}+b(0)+c$ $5=c$
(c) $7=a(2)^{2}+b(2)+c \quad 7_{5}=4 a+2 b+5$
(A) $10=a-b+c \xrightarrow{-1}-10=-a+b-c$
(c)

$$
\begin{array}{rl}
10 & =a-b+c \\
7 & =4 a+2 b+c \\
I-3=3 a+3 b & 7 a+2 b+c \\
& -3=4
\end{array}
$$

$$
y=2 x^{2}-3 x+5
$$

$$
6-82
$$

a) $a=\log _{b}(24) \leadsto 24=b^{a}$
b) $3 x=\log _{2 y}(7) \leadsto 7=(2 y)^{3 x}$
c) $3 y=2^{5 x} \leadsto 5 x=\log _{2}(5 x)$
d) $4 p=(2 q)^{6} \leadsto 6=\log _{2 q}(4 p)$
$6-83$
a)

$$
\begin{aligned}
& \frac{3 x}{x^{2}+2 x+1}+\frac{3}{x^{2}+2 x+1}=\frac{3 x+3}{x^{2}+2 x+1}=\frac{3(x+1)}{(x+1)(x+1)} \\
& =\frac{3}{x+1}
\end{aligned}
$$

bi $\frac{3}{\frac{3(x-1}{x-1}-\frac{2}{x-2}}$

$$
6-85 b
$$

$$
\begin{aligned}
y= & 5 x^{2}-10 x-7 \\
& \text { divide all by } 5
\end{aligned}
$$

$$
\begin{aligned}
& \frac{y}{5}= x^{2}-2 x \quad-\frac{7}{5} \\
& \quad \text { Add }\left(\frac{-2}{2}\right)^{2}=1
\end{aligned}
$$

to complete the square

$$
\frac{y}{5}+1=x^{2}-2 x+1-\frac{7}{5}
$$

$$
\frac{y}{5}+1=(x-1)^{2}-\frac{7}{5}
$$

multiply by 5

$$
\begin{gathered}
y+5=5(x-1)^{2}-7 \\
-5
\end{gathered}
$$

$$
\text { 6-8+b } \begin{aligned}
f(x) & =2 x^{2}-4 \\
f(3 a) & =2(3 a]^{2}-4 \\
& =2\left[9 a^{2}\right]-4 \\
& =18 a^{2}-4
\end{aligned}
$$

$6-87 d$

$$
\begin{aligned}
& f(x+7) \\
= & 2[x+7]^{2}-4 \\
= & 2(x+7)(x+7)-4 \\
= & (2 x+14)(x+7)-4 \\
= & 2 x^{2}+14 x+14 x+98-4 \\
= & 2 x^{2}+28 x+94
\end{aligned}
$$

before we start today about logs and \log functions from Ch. 5
(1) Every \log equation has an equivalent exponential equation (and vice versa)

$$
y=\log _{8}(x) \quad 8^{y}=x
$$

q
equivalent
(2) Log functions are the inverses of exponential functions
(as long as x and y are reversed)

$$
f(x)=11^{x} \quad f(x)=\log _{11}(x)
$$

(3) The Log key on calculators is base 10 only.
$\log (x)$ is called a common log
it means $\log _{10}(x)$
Calculate $\log 7$ on GDC

A/ㅣ Solve basic
log properties
like $1.3^{x}=17$
base exponent $=$ value

To be successful:

- You can show details of a process that leads to an answer.

You can produce both the exact answer and and answer rounded to 3 decimal places.

$$
\circlearrowleft \square y=\log \left(7^{x}\right)
$$

graph $Y_{1}=\log \left(7^{x}\right)$

$$
Y_{2}^{\text {and }}=x \cdot x
$$

c. $\log \left(7^{x}\right)=x \log (7)$

Same

Power Property of Logarithms

$$
\log \left(n^{x}\right)=x \cdot \log n
$$

for any base
for example: $\log _{3}\left(t^{n}\right)=n \cdot \log _{3}(t)$

time to solve

$$
1.04^{x}=2
$$

the challenge:

$$
\text { to isolate } x
$$

$$
\begin{aligned}
& \text { exponent } \\
& \text { base }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (a) } 5=2.25^{x} \\
& \log 5=\log \left(2.25^{x}\right) \\
& \log 5=x \cdot 5^{x}=10 \\
& x=\frac{\log (5)}{\log (205)} \\
& x \sim 1.98^{5}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) } 2\left(8^{x}\right)=128 \\
& 8^{x}=64 \\
& \log \left(8^{x}\right)=\log (64) \\
& x \cdot \log (8)=\log (64) \\
& x=\frac{\log (64)}{\log (8)} \\
& x=2 .
\end{aligned}
$$

(d)

$$
\begin{aligned}
& 2 x^{8}=128 \\
& x^{8}=64 \\
& \sqrt[8]{8}=\sqrt[8]{ } \\
& x=\sqrt[8]{64} e^{44^{6}} \\
& x=1.682
\end{aligned}
$$

and then an
exit ticket

Exit Ticket

- Exact answer and
- Approx. answer accurate to 3 decimal places

Assignment

6.-.72, 96-97, 99-100, 101b, 102, 103a
pore

