Find your new seat
Pick up the warm up and Hwk key

Check homework

No cell phones when going over LCQ's or tests
"SS" means see the solutions.

1. Solve the quadratic equation $x^{2}=-6 x-2$ using "completing the square" rather than

$$
\begin{aligned}
& x^{2}+\underset{1}{0}=-2 \quad \begin{array}{l}
b \text {-value } \\
\text { is } 6
\end{array} \\
& x^{2}+6 x+9=-2+9 \\
& (x+3)^{2}=7 \\
& \sqrt{ } \sqrt{ } \\
& \begin{array}{c}
x+3= \\
-3 \\
-3
\end{array} \\
& x=-3 \pm \sqrt{7}]
\end{aligned}
$$

2. Add the rational expressions

$$
\frac{3}{(x-4)(x+1)}+\frac{6}{x+1}\left(\frac{x-4}{x-4}\right)
$$

$$
\text { LCD) } \begin{aligned}
& \frac{3+6 x-24}{(x-4)(x+1)} \\
& \frac{3(2 x-7)}{(x-4)(x+1)}
\end{aligned}
$$

4. Now solve the inequality $\frac{4-x}{2} \leq 12$. Then graph on a number line.

$$
\begin{aligned}
& 2\left(\frac{4-x}{2}\right) \leq(12) 2 \\
& 4-x \leq 24 \\
& -4 \\
& -1\left(\begin{array}{ll}
-4 & \leq 20)
\end{array}>\right. \\
& x \geq 1
\end{aligned}
$$

5. Solve the following inequality. Since you won't be able to solve directly for x, use the boundary point/Test point method.

$$
\overbrace{(x-4)^{3}+6}^{\text {arg point/T/est point method. }} \leq \overbrace{x-4}^{Y_{2}}
$$

$$
\begin{aligned}
& (0-4)^{3}+6 \leq 0-4 \\
& (-4)^{3}+6 \leq-4
\end{aligned}
$$

Find the intersections
Boundary Points $x=2$

$$
\begin{aligned}
& \text { test pt } x=0 \\
& -64+6 \leq-4 V \\
& -58 \leq-4 \checkmark \text { yes } \times 0 \text { is spot set }
\end{aligned}
$$

6. Find the inverse of $(x-3)^{2}+(y-1)^{2}=4$ and graph it.

$$
(y-3)^{2}+(x-1)^{2}=4
$$

$$
C(1,3)
$$

April 08, 2019

Example of work with excellent

$$
\begin{array}{clc}
c^{\circ}\left(\frac{2 x^{3}}{5}-\left(\frac{1}{3}\right.\right. & =\left(\frac{137}{3}\right)^{\frac{5}{5}} & \frac{6 x-5}{15}=\frac{685}{15}
\end{array}
$$

51.)

$$
\begin{aligned}
& a: y=x^{2}+3 \\
& x=y^{2}+3 \\
& y^{2}= x-3 \\
& y=\sqrt{x-3} \\
& y
\end{aligned}
$$

$$
x=y^{2}+3 \quad b .
$$

b.'

$$
\begin{aligned}
& \text { 2. } y=(1 / 4 x+6)^{3} \\
& x=(1 / 4 y+6)^{3} \\
& \sqrt[3]{x}=1 / 4 y+6 \\
& 1 / 4 y=\sqrt[3]{x}-6 \\
& y=4(\sqrt[3]{x}-6) \\
& f^{2}(x)=4(\sqrt[3]{x}-6)
\end{aligned}
$$

$$
\text { c. } ' y=\sqrt{5 x-6}
$$

$$
x=\sqrt{5 y-6}
$$

$$
\begin{aligned}
& \text { Algebra } 2 b \text { Hw: Ch. } 5 \text { * 48-49,50bc,51-52,54ac } \\
& \text { 48.) } \begin{array}{rlrl}
g(f(3)) & =((513)-3)-1)^{2} \quad \text { b. } g(x) & =(x-1)^{2} & f(4)=5(4)-3 \\
g(f(3)) & =(12-1)^{2} & g(3) & =(3-1)^{2} \\
& f(4)=17
\end{array} \\
& g(f(3))=121 \quad g(3)=4
\end{aligned}
$$

49.)

$$
\begin{array}{ll}
\begin{array}{l}
a(x+1)\left(2 x^{2}-3\right) \\
=2 x^{3}-3 x+2 x^{2}-3 \\
= \\
=2 x^{+}+2 x^{2}-3 x-3
\end{array}=x^{3}-2 x^{2}+3 x+x^{2}-2 x+3
\end{array}
$$

Schedule

Today 5.2.2 Day l
Tues 5.2.2 Day 2
Wed Ch 5 Closure
Thurs Ch 5 Test
Friday 6.1.4

Questions on first look at * 60

Alg 2 Solutions
5-60] Investigate the inverse of $y=3^{x} \quad x=3^{y}$

* Start by sketching its graph which can be done by making a table and reversing the coordinates or by "drawing" the inverse an your calculator

* Find domain and range

$$
\downarrow<\pi<\infty \quad \longrightarrow-\infty<y<\infty
$$

or it can be written

$$
06 \quad x>0
$$

* Find intercepts

$$
\begin{gathered}
x \text {-intercept }(\operatorname{set} y=0) \Rightarrow \begin{array}{l}
x=3^{0} \\
40, x=1
\end{array} \\
\therefore x \text {-intercept is }(1,0)
\end{gathered}
$$

* Asymptotes
only a vertical : the equation $x=0$ line
$5-61 \quad f(x)=\frac{2}{7-x}$
d) $f(3(3))=\frac{2}{7-11}$
a) $f(7)=\frac{2}{7-7}=\frac{2}{0}$ undefined
b) domain
(x can be asl values, but not 7)

$$
=\frac{2}{-4}
$$

$$
-\infty<x<7,7<x<\infty
$$

$$
=-\frac{1}{2}
$$

c) $g(3)=2(3)+5=11$

$$
\begin{gathered}
-\infty<x<\infty \\
x \neq 7
\end{gathered}
$$

5-62 $\quad f(x)=1+\sqrt{x+5}$
(a) find the inverse and call it $a(x)$

$$
y=1+\sqrt{x+5}
$$

swatch x and y "s " and

$$
\begin{gathered}
x=1+\sqrt{y+5} \\
-1 \\
\sqrt{y+5}=x-1 \\
()^{2} \text { samara both }()^{2} \\
y+5=(x-1)^{2} \\
y=(x-1)^{2}-5 \\
\therefore \quad e(x)=(x-1)^{2}-5
\end{gathered}
$$

but can only vas the inherited domain (frost the range of $f(x)$) which if $1 \leq x<\infty$
(b) $e(f(-4)) \quad f(-4)=1+\sqrt{-4+5}$

$$
\begin{aligned}
& =(x-1)^{2}-5 \\
& =(2-1)^{2}-5=1+\sqrt{1}=2 \\
& =-4 \operatorname{same}_{\text {into }} \underset{\text { original input }}{ }(x)
\end{aligned}
$$

6) Their graphs would be reflections of each other across the line $y=x$
7)

domain
$5-63 \quad y+3=2^{x}$

$$
y=2^{x}
$$

c) $\frac{y \text {-intercept }}{y=2^{0}-3}$ Set $x=0$
a) $y=2^{x}-3$
domain

$$
=-3<y<\infty
$$

which can also be
written as $y>-3$
b) No lines of summery

$$
\begin{aligned}
& \frac{x \text {-intreroep } p^{5}}{v s e 6 D C} \text { set } y=0 \\
& (1.585,0)
\end{aligned}
$$

\square

5-66
(a) $x^{2}-49$ $(x+7)(x-7)$
(b) $6 x^{2}+48 x$
$6 x(x+8)$
c) $x^{2}-x-72$

$$
=(x-4)(x+8)
$$

d) $2 x^{3}-8 x$

$$
\begin{aligned}
& =2 x\left(x^{2}-4\right) \\
& =2 x(x+2)(x-2)
\end{aligned}
$$

$5-67$
sketch the solution to the System of Inequalities

$$
\begin{aligned}
& y \geq(x+5)^{2}-6 \\
& y \leq-(x+4)^{2}-1
\end{aligned}
$$

10> and
Convert back and forth between \log and exponential form of an equation

LAST CLASS An Ancient Puzzle more than 2000 years old.

Here are some clues to help you figure out how the puzzle works:

$$
\begin{array}{ll}
\log _{2} 8=3 & \log _{3} 27=3 \\
\log _{5} 25=2 & \log _{10} 10,000=4
\end{array}
$$

$\begin{gathered}\begin{array}{c}\text { Additional } \\ \text { clues }\end{array}\end{gathered} \log _{3} 9=2 \quad \log _{7} 49=2$

$$
\log _{10} 1000=3 \quad \log _{5} 1=0
$$

Two Things lo remember:

1. The base remains the same in both forms (in exponential form and log form)
2. A logarithm is an exponent (a logarithm produces an exponent)

April 08, 2019

Convert
back
exponential

$$
\begin{aligned}
& 2000=5^{x} \\
& 16^{\frac{1}{2}}=4 \\
& \sqrt{16}=4 \\
& 8^{\frac{2^{2 \times x}}{3 \times 1+4}} 3 \sqrt{8^{2}}
\end{aligned}
$$

Conversion Practice

back and for th

Conversion Practice

$$
\begin{gathered}
\frac{\text { Log form }}{\log _{3}(x)=5} \rightarrow \frac{\text { Exponential form }}{3^{5}=X} \\
2=\log _{7}(m) \rightarrow 7^{2}=M \\
4=\log _{n}(6) \rightarrow n^{4}=6 \\
\log _{n} P=t \rightarrow \eta^{+}=P
\end{gathered}
$$

$$
\begin{array}{cl}
\log _{3}(1,000)=X \leftarrow & 3^{x}=1000 \\
\log _{x}(50)=4 & \leftarrow \\
50=x^{4} \\
\log _{0}(\operatorname{lo} 23)=n & \leftarrow \\
\log _{A}(R)=M & \leftarrow \\
\hline A^{M}=R
\end{array}
$$

No calculator calculations

(a) $\log _{2}(32)=5$ because
(b) $\log _{2}\left(\frac{1}{2}\right)=-1$ $2^{D}=32$
(c) $\log _{2}(4)=2$
$2^{0}=\frac{1}{2}$

$$
2^{0}=4
$$

(d) $\log _{2}(0)=$ und
$2^{\square}=0$

(e) $\log _{2}(?)=3 \xlongequal[\text { awver }]{ }$ because
(f) $\log _{2}(?)=\frac{1}{2}$ be caust
(9) $\log _{2}\left(\frac{1}{16}\right)=$ because
(h) $\log _{2}(?)=0$ because

Strong Recommendation

Read the Math Notes on page 233
 Copy down in your Notes

b. Is the graph below a function? Is it's inverse a function?
Worksheet 5.2.2
Add the page 233
Math Notes to your notes.

