

$$
\begin{aligned}
4-87 \quad x-3(y+2) & =6 \\
a-x & -x \\
-3(y+2) & =6-x \\
-3 y-6 & =6-x \\
+6 & \\
-3 y & =12-x \quad y=\frac{12-\frac{x}{-3}}{-3} \\
y & =\frac{12-x}{-3}
\end{aligned} \quad y=-4+\frac{x}{3} .
$$

\qquad
a) The equation of the parabola is: $\quad y=\frac{1}{2}(x+3)^{2}-2$
b) Determine the equation of the line: $y=x+5$
c. Use your graph to solve $x+5=\frac{1}{2}(x+3)^{2}-2$.

$$
\begin{gathered}
x=-5 \\
x=1
\end{gathered}
$$

d. Use your graph to solve the system:

$$
\begin{array}{ll}
y=\frac{1}{2}(x+3)^{2}-2 & m=(-50)(1,6) \\
y=x+5 & n=(1)
\end{array}
$$

e. Use your graph to solve the inequality $x+5<\frac{1}{2}(x+3)^{2}-2$.

f. Use your graph to solve $\frac{1}{2}(x+3)^{2}-2=0$.

Where does the
Par a bola touch the x-axis

I will not be available before or after school tomorrow.

I will be available before school on Thursday Starting at 7.15 am .

FIll also be available after school Thurs]

The faulty

Originally Question 3 was going to be about solving an absolute value equation

$$
|x-3|=2 x-12 \quad|x-5| \geq 2 x-7
$$

then I decided to change it to solving an inequality but I forgot to check out the solution first

$$
|x-3| \geq 2 x-12
$$

I thought I had...

but instead I had

We dit not spend enough time and look at them in depth enough for that Situation

Boundary
Point
Method

$$
x \geq 9
$$

in more complex inequalities, all regions have to be checked

$$
x \geq 5 \text { and } x \geq 9
$$

then there is a misunderstanding about "Solutions"

$$
\begin{aligned}
& \text { proving if } \\
& n=3 \text { is } \\
& \text { a solution to } \\
& \text { an inequality }
\end{aligned}
$$

$$
6 n^{2}+n \leq 3 n^{2}+7 n
$$

$$
6(3)^{2}+3 \leq 3(3)^{2}+7(3)
$$

See how systems of inequalities are used by businesses to help maximize profits.
(obviously a simplified version)

$$
\xrightarrow{\text { AIM } \rightarrow \left\lvert\, \begin{array}{c|c}
\text { Use inequality } \\
\text { constraints } \\
\text { to solve a } \\
\text { problem }
\end{array}\right.} \begin{array}{|c}
\\
\leftarrow \begin{array}{c}
\text { Start at the } \\
\text { Top of a } \\
\text { sheet } \\
\text {-Need Spare }
\end{array} \\
\text {-N }
\end{array}
$$

Read through
p^{191}
notes $4-79$ The Factory

Make a list of ALL possible outcomes
Is it possible to make 5 trucks and I car?
cars, trucks

There is no obvious choice for the dependent and independent variable. The decision is arbitrary.

$$
\begin{aligned}
& \text { Co to question } \\
& \text { 4. } 80 b^{\sigma} \\
& \text { (4ip }
\end{aligned}
$$

syon」1 \#

\# cars

The market has changed, and Otto can now make \$2 for each
3. truck but only $\$ 1$ for each car. What is his best choice for the number of cars and the number of trucks to make in this situation? How can you be sure? Explain.

$$
\begin{aligned}
& \text { (Cars, trucks) Profit }{ }^{\text {W/ }} 1 \text { per car } \$_{2} \text { prado } \\
& (3,4) \\
& 1(3)+2(4)=11 \\
& (3,2) \\
& 1(3)+2(2)=7 \\
& (7,0) \\
& 1(7)+2(0)=7 \\
& 8 \\
& \begin{array}{l}
\text { done at } \\
\text { nee ar and } \\
\text { node } \\
\text { chan }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mole to } \\
& 4-81 a \text { and } b
\end{aligned}
$$

Wheels Seats Tanks

$$
\begin{aligned}
& 4 x+6 y \leq 36 \quad 2 x+y \leq 14 \quad x+3 y \leq 15 \\
& 6 y \leq-4 x+36 \\
& y \leq-\frac{4}{6} x+6 \\
& y \leq-\frac{2}{3} x+6
\end{aligned}
$$

