

$$
\begin{gathered}
4.87 \\
a
\end{gathered}
$$

a) The equation of the parabola is: $\quad y=\frac{1}{2}(x+3)^{2}-2$
b) Determine the equation of the line: $y=x+5$
c. Use your graph to solve

$$
\begin{gathered}
x+5=\frac{1}{2}(x+3)^{2}-2 \\
x=-5 \\
x=1
\end{gathered}
$$

d. Use your graph to solve the system:

$$
\begin{aligned}
& y=\frac{1}{2}(x+3)^{2}-2 \\
& y=x+5
\end{aligned}
$$

$$
x=\quad y=
$$

$$
(1,6) \quad(-5,0)
$$

e. Use your graph to solve the inequality $x+3<\frac{1}{2}(x+3)^{2}-2$.

f. Use your graph to solve $\frac{1}{2}(x+3)^{2}-2=0$.

$$
\begin{aligned}
& x=-5 \\
& x=-1
\end{aligned}
$$

I will not be available before or after school tomorrow.

I will be available before school on Thursday Starting at 7.15 am .

FIll also be available after school Thurs)

The faulty

Originally Question 3 was going to be about solving an absolute value equation

$$
|x-3| \geq 2 x-12 \quad|x-5| \geq 2 x 7
$$

then I decided to change it to solving an inequality but I forgot to check out the solution first

$$
|x-3| \geq 2 x-12
$$

I thought I had....

but instead I had

We dit not spend enough time and look at them in depth enough for that situation

Boundary
Point
Method

in more complex inequalities, all regions have to be checked

$$
x \geq 5 \text { and } x \geq 9
$$

then there is a misunderstanding about "Solutions"

$$
\begin{aligned}
& \text { proving if } \\
& n=3 \text { is } \\
& \text { a solution to } \\
& \text { an inequality }
\end{aligned}
$$

$$
6 n^{2}+n \leq 3 n^{2}+7 n
$$

$$
6(3)^{2}+3 \leq 3(3)^{2}+7(3)
$$

See how systems of inequalities are used by businesses to help maximize profits.
(obviously a simplified version)

$$
\left.\underline{\underline{\text { AIM }} \rightarrow} \begin{gathered}
\text { Use inequality } \\
\text { constraints } \\
\text { to solve a } \\
\text { problem }
\end{gathered} \right\rvert\,<\begin{gathered}
\text { start at the } \\
\text { top of a } \\
\text { sheet } \\
\text {-Need space }
\end{gathered}
$$

Read through

$$
\text { p.191 } \longrightarrow 4-79{ }^{\text {The Toy }} \text { Factory }
$$

Make a list of ALL possible outcomes
Is it possible to make 5 trucks and l car?
cars, trucks

There is no obvious choice for the dependent and independent variable. The decision is arbitrary.

The market has changed, and Otto can now make $\$ 2$ for each
3. truck but only $\$ 1$ for each car. What is his best choice for the number of cars and the number of trucks to make in this situation? How can you be sure? Explain.
(Cars, trucks)

$$
\text { Profit }{ }^{\text {H}} 1 \text { per car } \# 2 \text { per trod' }
$$

$$
(6,1)
$$

$$
1(6)+2(1)=8
$$

$$
(7,0)
$$

$$
I(7)+2(0)=7
$$

$$
1(3)+2(4)=11
$$

$$
(3,4)
$$

$$
1 \quad 1
$$

move to
4-81 a and b

$y_{b=-\frac{2}{3}} \leq+6$
$y \leq-2 x+14$
$y \leq-\frac{1}{3} x+5$
(3.4)
11

\qquad

c) Vertices

d) Are there any points in the solution region that represent choices that seem more likely to give Otto the maximum profit? Where are they? Why do you think they show the best choices?
e) Write an equation to represent Otto's total profit (D) if he makes $\$ 1$ on each car and $\$ 2$ on each truck. What if Otto ended up with a profit of only $\$ 8$? Show how to use the graph of the profit equation when $P=8$ to figure out how many cars and trucks he made.

$$
P=x+2 y
$$

(f) Which points do you need to test in the profit equation to get the maximum profit? Is it necessary to try all of the points? Why or why not?

(g)

What if OHo got greedy and wanted to make a profit of $\$ 14$? How could you use a profit line to show Otto that this would be impossible based on his curre pricing?
4.... 83, 85, 95, 97

