1° Front Side of TODAY 4.21 day 3
Warm UP Tues 4.2.2 only
wed Ch Review
Thu $\mathrm{Ch}_{6} 4$ TesT
+TURN IN NOTEBOOK + TURN IN Ch. 4 Assign.

Fri Start Review For Final Exam
(1) Solve the equation $2 x^{2}+5 x-3=x^{2}+4 x+3$ graphically
by using the graph below.

$$
\begin{aligned}
& x=-3 \\
& x=2
\end{aligned}
$$

$\begin{aligned} & \text { (2) Now solve the INEQUALITY } \\ & \text { graph below. }\end{aligned} x^{2}+5 x-3 \leq x^{2}+4 x+3$ by using. only the

only I variable so solutions can be
shown on a number
line $<$ ब

$-3 \leq x \leq 2$
(3) Burt and Ernie were solving the inequality $2 x^{2}+5 x-3 \leq x^{2}+4 x+3$. They were looking at the graph when Burt had an idea. "Cant we change this into one parabola and solve our inequality that way?" he said.
Ernie asked, "What do you mean?"

$$
2 x^{2}+5 x-3 \leq x^{2}+4 x+3
$$

$$
\begin{array}{r}
x^{2}+x-6 \leq 0 \text { easier if done } \\
\text { graphically }
\end{array}
$$

the back side of the warm UP is for later

Pick up the ch. 4
information sheet

There is a shortcut for graphing 2-variable inequalities.....
at least the kind that you can isolate y
Let's look at the
examples from last class.

(B) $y<|x-3|+1$
$y=|x-3|+1$

(C) Above stem

$$
\begin{aligned}
& \text { Test Test } \\
& y>2 x+1 \quad y \leq \frac{1}{2} x+3 \\
& y \geq 2 x+1 \quad \operatorname{TeST}(0,0) \quad \operatorname{Test}(2,1) \\
& y \leq \frac{1}{2} x+3 \\
& \Rightarrow 0>2(0)+1 \quad \left\lvert\,<\frac{1}{2}(2)+3\right. \\
& \sqrt[4]{\sqrt[4]{\sqrt[2]{2}} \sqrt[4]{4} \sqrt[4]{4}} \rightarrow \\
& \text { false } \\
& 1 \leqslant H \\
& \text { true }
\end{aligned}
$$

If you cant' solve for x..... well then you'll have to use do some point testing....

$$
x-3+y^{3} \div \sqrt{y+2}+7
$$

Now the reverse
Determine the 2 -variable Inequalities

B.

$y>x-2$

$y>-2$

D

$y>-3 x+2$

$$
-\frac{5}{3} \chi
$$

back of warm UP

MATCHING
(A) $y>-\frac{1}{2} x+2$
(B) $y \leq-\frac{1}{3}(x+3)(x-4)$
$y \leq-\frac{1}{3}(x+3)(x-4)$
(C) $-\frac{1}{3}(x+3)(x-4)=-\frac{1}{2} x+2$
(1) $\begin{aligned} & y \leq-\frac{1}{3}(x+3)(x-4) \\ & y>-\frac{1}{2} x+2 \\ & x\end{aligned}$

$$
x \geq 0
$$

on recent HW
$\left.\begin{array}{l}\text { - GDP } \\ \\ \text { - MW } \\ \text {-NoTes }\end{array}\right\}$ Yes!

4 73ab, 74, 76-77, 84, 87

