

$$
\begin{aligned}
& \text { ck } \\
& \text { the }
\end{aligned}
$$

$$
p_{d}^{\omega} / p
$$

WarmUP

Check work from HW (Any questions?)
(1)

(2) Describes all discontinuites

$$
\begin{gathered}
2 x-7=0 \\
2 x=7 \\
x=3.5 \\
-\infty<x<\infty, x \neq 3.5 \\
-\infty<y<\infty, y \neq 3
\end{gathered}
$$

(3) Create an equation of a circle with radius.I2 whose center is ($-100,-90$)

$$
(x+100)^{2}+(y+90)^{2}=144
$$

(4) $x^{2}-8 y-12 x+y^{2}=12$

$$
x^{2}-12 x \quad y^{2}-8 y=12
$$

$$
x^{2}-12 x+36 \quad y^{2}-8 y+16=12+36+14
$$

$-(x-6)^{2}+(y-4)^{2}=64$
center (6,4) radius 8 units
$5 a$. How do I know if an
circle any from

$$
\begin{aligned}
& 10=3 x-7 \\
& 6=x^{2}-7 x+2 \\
& 5 x^{2}-8 x+100=7 \\
& 3 x^{2}-x+1 \\
& (x-2)^{2}=17 \\
& x^{2}-1=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { NOT } \\
& \text { an }
\end{aligned} \quad 3 x^{2}-x+1
$$

$$
\text { equal: } \quad(x-2)^{2}=17
$$

5b) What are the two ways to solve a quadratic equation?

1) $F A C T O R+Z P D$
2) Quadratic Formula
huh? \rightarrow 3)

Ho

> 106 Lexington tits growth rate $4.7^{\%}$ 3 years ago there ware 1500 students
a) How many are there now?
b) How many were there 5 years ago?
c) in n years?

Alt Use completing the square to solve a quadratic equation

Simplify complex Algebraic fractions

$$
\begin{aligned}
& \text { Another : } \\
& x^{2}=10-12 x\left(\frac{b}{2}\right)^{2} \quad \begin{array}{ll}
x+6=\sqrt{46} & x+6=-\sqrt{46} \\
x=-6+\sqrt{46} & x=-6-16,
\end{array}
\end{aligned}
$$

$x^{2}(1) x-10=0$

$$
x^{2}+12 x+36=10+36
$$

$\sqrt{(x+6)^{2}}=46$

$$
x^{2}+12 x=10
$$

$$
x+6= \pm \sqrt{46}
$$

$3 n^{2}-18 n+20=0$
must be a I
divide all terms by 3

$$
n^{2}-6 n+\frac{20}{3}=0
$$

Simplify a complex fraction

$$
\frac{\frac{10}{7 y}+\frac{1}{7 y}}{\frac{5}{y}} \rightarrow \frac{\frac{11}{7 y}}{\frac{5}{y}} \rightarrow \frac{11}{7 y} \cdot \frac{y}{5}
$$

Partner

$$
\text { do } 119 \text { with your GDC }
$$

$$
\begin{aligned}
& V=\pi r^{2} h \\
& S A=2 \pi r^{2}+2 \pi r h
\end{aligned}
$$

Volume to SA ratio

$$
\frac{V}{S A}=\frac{\pi r^{2} h}{2 \pi r^{2}+2 \pi r h}
$$

Simplify

