Pick up the warm up please
any HW questions?

(1) Does $f(x)=\frac{3 x-1}{x+8}$ have a vertical asymptote? YeS

$$
x=-8
$$

Does $g(x)=\frac{3 x-1}{x+8}$ have a horizontal asymptote? Yes B^{\prime}

2 Does $h(x)=\frac{5 x-20}{x-4}$ have a hole or an asymptote?

$$
x=4
$$

13] Simplify $\frac{5 n^{2}-45}{15-5 n}$

$$
\frac{5\left(n^{2}-9\right)^{2}}{5(3-n)}
$$

- (12-3)
(4) Solve the Absolute value

$$
\frac{|2 x-3|}{9}=2
$$

$$
|2 x-3|=18+2 x
$$

94 bologna sandwich bacteria currently 72 million triples every 24 hours

15 days ago, there was \qquad bacteria funcTION $y=a b^{x}$

$$
\begin{gathered}
72000000=a(3)^{15} \quad a=\frac{72000000}{3^{15}} \\
y=72000000 \cdot(3)^{-15} \quad a=5
\end{gathered}
$$

$$
\text { low as } 100 \text { ? }
$$

96c) $\frac{8}{k}=\frac{14}{k+3}$

$$
8(k+3)=14 k
$$

90 a.

$$
\frac{x-7}{9(2 x-1)} \div \frac{(x+5)(x-7)}{6 x(x+5)}
$$

90
b. $\frac{6 x^{2}-x-1}{3 x^{2}+2 x+8} \cdot \frac{x^{2}+4 x-32}{2 x^{2}+7 x-4}$

${ }^{90}$
b. $\frac{6 x^{2}-x-1}{3 x^{2}+2 x+8} \cdot \frac{x^{2}+4 x-32}{2 x^{2}+7 x-4}$

$$
\frac{(2 x-1)(3 x+1)}{\left(3 x^{2}+2 x+8\right.} \Leftrightarrow \frac{(x+8)(x-4)}{(x+4)(2 x-1)} \quad \begin{array}{r}
x-32 x \\
2 x \\
-4 x+8 x
\end{array}
$$

$$
\text { 91 a } \frac{(x+4)^{2}}{(x+4)(x-2)}=
$$

$$
91 b \frac{8(x+2)^{3}(x-3)^{3}}{4(x+2)^{2}(x-3)^{5}}
$$

$$
93 b \quad \begin{aligned}
& 3 x-2 y=30 \\
& 2 x+3 y=-19
\end{aligned}
$$

$$
72=a(3)^{15}
$$

$$
96 a \cdot \frac{m}{6}=\frac{m+1}{5} \quad \text { c. } \frac{3 x-5}{2}=\frac{4 x+1}{4}
$$

from this point on in this course, you may assume that all values of x that would make a denominator zero are excluded

1. Simplify individual fractions first
2. Show a common denominator.
3. Condense to a single fraction.

(1)

$$
\frac{2}{13}+\frac{5}{13} \rightarrow \frac{2+5}{13} \rightarrow \frac{7}{13}
$$

$$
\begin{aligned}
& \frac{m-3 n}{6 m^{3} n}-\frac{m+3 n}{6 m^{3} n} \\
& \frac{m-3 n-(m+3 n)}{6 m^{3} n} \\
& \frac{6 n-6 n}{6 m^{3} n}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{3}(s)+ \\
& \frac{1}{3}(s) \\
& \frac{1}{15}
\end{aligned}
$$

$\mathrm{Brain}_{\mathrm{Br}_{\mathrm{eak}}}$

$$
\begin{aligned}
& \frac{2}{x+4}+\frac{4 x-x^{2}<\text { Factor! }}{x^{2}-16}<\text { Factor } \cdots! \\
& \frac{2}{x+4}+\frac{-x(x-x)}{(x+4)(x-4)} \\
& \frac{2}{x+4}-\frac{x}{x+4}
\end{aligned} \frac{2-x}{x+4} .
$$

