

Suppose we wanted to know if the gender of an interviewer could affect the **responses to a survey question**. The subjects in their experiment were 100 males from their school.

Half of the males were randomly assigned to be asked, "Would you vote for a female president?" by a female interviewer. The other half of the males were asked the same question by a male interviewer.

Gender of interviewer

1

Response to question

	Male	Female	Total
Yes	30	39	69
No	8	3	11
Maybe	12	8	20
Total	50	50	100

Suppose we wanted to know if the gender of an interviewer could affect the responses to a survey question. The subjects in their experiment were 100 males from their school.

Half of the males were randomly assigned to be asked, "Would you vote for a female president?" by a female interviewer. The other half of the males were asked the same question by a male interviewer.

DOPU	lation	Gender	of interviewe	er

		Male	Female	Total
	Yes	30	39	69
Response to question	No	8	3	11
question	Maybe	12	8	20
	Total	50	50	100
Variable				

Lesson 11.2 (Day 1): Does gummy bear brand matter?

Is the distribution of gummy bear color the same for Haribo gummy bears and Great Value gummy bears? We'll collect data as a class and determine if we have convincing evidence

1. Add your data to the board and fill in the table below with the class totals.

)

	Counts of Haribo	Total			
Red	2,9,13•9/3	64			
Green	624576	30			
Yellow	355677	33			
Orange	35 35 1	18			
White	338357	29			
Haribo					

1. Add your data to the board and fill in the table below with the class totals. Brand Observed: Haribo Great Value Total Red Green Color Yellow Orange White Total 2. How many samples do we have? What population are they from? from Harrbo Samples from Great Value 3. How many variables are we examining? 4. As a class, write down hypotheses for a significance test There is no difference in the true distributions of color between Haribo an Great Value. rere is a difference in the true

5. Now we will use a chi-square test (of Homogeneity) to test if there is a difference between the two populations.					
We first need to fine	d the expected values.	$C \perp \rightarrow I$	Fill in tatels		
4	- Expected of	70121	Fill in totals		
Expected	EXPECTED OF Brand		1 +NST		
	Haribo	Great Value	Total		
	Red 5	.5 94.5	1153		
	Green 30	6 49.4	180		
Color	Yellow 33	.3 53.7	87		
	Orange	5.7 38.3	62		
	White 27	9 45.1	73		
	Total	4 281	1,45		
	A +-	1.51 20.	I to to Tot		
Expected	Counts _ Row	101al × 10	TUMM 101AI		
	_	Hotal × Co Table T	otal .		
6. On the back side, co	ontinue with a 4-step significar	1			
o. On the back side, e.	shande with a 1 step significan	ice test.			

STATE: Hypotheses:	Significance level:
	Q = 0.5
PLAN: Name of procedure: Chi-square test for homogeneity	\longrightarrow
Check conditions:	1
Random: We randomly selected,	gummies
Havibo total sample 17	<pre> < \frac{1}{10} (all Haribo)</pre>
Great Value total samp. 2	
Large Counts: All expected coun	ts >5
(see table)	'

Chi-Square Test for Homogeneity

Conditions for Performing a Chi-Square Test for Homogeneity

Random: The data come from independent random samples OR from groups in a randomized experiment.

10%: When sampling without replacement, n < 0.10N for each sample.

Large Counts: All expected counts are at least 5.

Chi-Square Test for Homogeneity

Suppose the conditions are met. To perform a test of

 H_0 : There is no difference in the distribution of a categorical variable for several populations or treatments

compute the chi-square test statistic

$$\chi^2 = \sum \frac{\text{(Observed count } - \text{Expected count)}^2}{\text{Expected count}}$$

where the sum is over all cells (not including totals) in the two-way table. The *P*-value is the area to the right of χ^2 under the chi-square density curve with degrees of freedom = (num. of rows - 1)(num. of columns - 1).

Specific Formula:
$$\chi^2 = \frac{6-\epsilon}{\epsilon}$$
 $\frac{6-\epsilon}{\epsilon}$ $\frac{6-$

CONCLUDE:

Because the P-Value of 53 > $\alpha = 0.05$ we freject to

.. There 15 Not convincing evidence that there is a difference between the true distributions of color of Haribo an Great Value Gunmies

- 7. Explain how this test is different from a chi-square test for goodness of fit?
- 8. Interpret the P-Value you calculated above:

Assuming _______ in the true distributions of the color for Haribo and Great Value, there is a ______ probability of observing differences in the distributions of responses as ______ than the ones in the study.

7. Explain how this test is different from a chi-square test for goodness of fit?
We have two samples from two populations. (Harriso and Great Value) χ^2 -GOF has one sample from I population (compared to a known distrib)
22-GOF has one sample from I population (compared to a known distrib)
8. Interpret the P-Value you calculated above:
Assuming 10 1 + Leven Ce in the true distributions of the color for Haribo and Great Value, there is a
probability of observing differences in the distributions of responses as AVGE OV WALL than
the ones in the study.

Importantideas:

There is no difference in the distribution for in the categoricable distribution for pop. I and pop. 2

Har There is a difference.

Expected Counts

X2 Homogeneity

X3 GOF

```
Importantideas:
He There is no difference in the distribution
in the categorical de distribution for

POP. 1 and POP. 2

Ha There is a difference.

Expected
Counts = Row Total x Column Total
Table Total

X2 Homogeneity

X3 GOF
```

Importantideas:

Typotheses. Ho. There is no difference in the distribution for in the categorical destribution for pop. 1 and pop. 2.

Ha. There is a difference....

Expected Gunts = Row Total x Column Total Table Total

Table Total

2 samples, 1 variable

X² GOF 1 sample, 1 variable

Music Preferences
between

Californians and Michiganians?
Michiganites?

What is your music preference? The chi-square test for homogeneity

Do high school students in Michigan and California have the same music preferences? We used the Census at School® website to select separate random samples of 100 high school students from Michigan and 100 high school students from California. Students were asked, "What is your favorite music genre?" The two-way table summarizes their responses.

	State			
		Michigan	California	Total
Favorite music genre	Country	12	4	16
	Pop	15	14	29
	Rap	21	22	43
	Rock	7	10	17
	Other	45	50	95
	Total	100	100	200

Do these data provide convincing evidence at the $\alpha=0.05$ level that the distributions of favorite music genre differ for high school students in Michigan and California?

STATE

Ho: There is no difference in the distributions of favorite music genre for high school students in Michigan & Calif.

Ha. There is a difference in the distributions of favorite music ...

Q = 0.05

PLAN

Chi-Square test for Homogeneity

Random Independent random samples of Students from Michigan and Calif.

100 < 10% of all Mechigan high school students

100 < 10% of all Califo High School students

Large Counts All expected Counts 25 (See table)

Expected	G	state		
Value		MPch.	Call	Total
Fav.	Country			16
M USIC	Pop			29
Genre	Rap			43
	Rock			17
	Other			95
	Total	100	/00	200
		•		

Exported	S	itate			Can
Jaio		MPch.	Calef	Total	200
Fav.	Country	8	8	16	Matrices
MUSIC	Pop	14.5	14.5	29	page 735
Genre	Rap	21,5	21.5	43	-736
	Rock	8.5	8,5	17	
	Other	47.5	47.5	95	
	Total	/00	/00	200	
		`			

For this test to run

Properly, there must

be at least 2 rows and

at least 2 columns

(will not work for

X2 for Goodness of fit)

$$\chi^{2} = \sum \frac{(0-E)^{2}}{E}$$

$$\chi^{2} = \frac{(12-8)^{2}}{8} + \frac{(4-8)^{2}}{8} + \frac{(15-14.5)^{2}}{14.5} + \cdots = 4.85$$

$$= 4.85$$

$$= (5-1)(2-1) = 4$$
Phalae $\chi^{2}_{cdf} = 4.85$, 10000 , $41 = 0.303$

CONCLUDE

Because the - P-Value of $0.303 > \infty = .05$ We fail to reject the.

There is not convincing evidence of a difference in the distributions of fav. music genre for H.S. Students in Michigan and California.

11.2....27-35 (odds)

g