Chi-Square Test for

Goodness of one variable one population

Independence

$$
\begin{aligned}
& \text { one variable } \\
& \text { but } 2+\text { populations }
\end{aligned}
$$

two Variables but only I population

Require Two -Way Tables

Suppose we wanted to know if the gender of an interviewer could affect the responses to a survey question. The subjects in their experiment were 100 males from their school.

Half of the males were randomly assigned to be asked, "Would you vote for a female president?" by a female interviewer. The other half of the males were asked the same question by a male interviewer.

Gender of interviewer

Suppose we wanted to know if the gender of an interviewer could affect the responses to a survey question. The subjects in their experiment were 100 males from their school.

Half of the males were randomly assigned to be asked, "Would you vote for a female president?" by a female interviewer. The other half of the males were asked the same question by a male interviewer.

Lesson 11.2 (Day 1): Does gummy bear brand matter?
Is the distribution of gummy bear color the same for Haribo gummy bears and Great Value
gummy bears? We'll collect data as a class and determine if we have convincing evidence gummy bears? We'll collect data as a class and determine if we have convincing evidence

1. Add your data to the board and fill in the table below with the class totals.

	Counts of Great Value			Total			
Red	0	5	6	9	3	6	8

1. Add your data to the board and fill in the table below with the class totals.

2. How many samples do we have? What population are they from?

$$
\begin{aligned}
& \text { 2 samples } \\
& \\
& \text { I from I Ir om Great Value }
\end{aligned}
$$

3. How many variables are we examining?
variable - color
4. As a class, write down hypotheses for a significance test.
\mathbf{H}_{0} : There is no difference, in the true distributions of color between Haribo an Great Value.
H_{a} : There is a difference in the true.
5. Nowwe will use a chi-square test (of Homogeneity) to test if there is a difference between the two populations. We first need to find the expected values.

$$
\begin{array}{ll}
\text { Expected: } & \begin{array}{l}
\text { Red } \\
\text { Green } \\
\text { Yellow } \\
\text { Orange } \\
\text { White } \\
\text { Total }
\end{array} \\
\text { Expected Counts }
\end{array}
$$

6. On the back side, continue with a 4-step significance test.

STATE: Hypotheses:

PLAN: Name of procedure: Chi-square test for homogeneity -
Check conditions:
Random: We randomly selected gummier
. Haribo total sample $174<\frac{1}{10}\left(\begin{array}{c}\text { all } \\ \text { Iaribop } \\ \text { pop }\end{array}\right)$ Great Value total gamp: $281<\frac{1}{10}$ (all Great ur) port

$$
\text { Large counts: All expected counts } \geqslant 5
$$

(see table)

Chi-Square Test for Homogeneity

Conditions for Performing a Chi-Square Test for Homogeneity

Random: The data come from independent random samples $O R$ from groups in a randomized experiment.
10% : When sampling without replacement, $n<0.10 \mathrm{~N}$ for each sample.
Large Counts: All expected counts are at least 5.

Chi-Square Test for Homogeneity

Suppose the conditions are met. To perform a test of
H_{0} : There is no difference in the distribution of a categorical variable for several populations or treatments compute the chi-square test statistic

$$
\chi^{2}=\sum \frac{(\text { Observed count }- \text { Expected count })^{2}}{\text { Expected count }}
$$

where the sum is over all cells (not including totals) in the two-way table. The P-value is the area to the right of χ^{2} under the chi-square density curve with degrees of freedom $=$ (num. of rows -1)(num. of columns -1).

D0: Specific Formula: $\lambda^{2}=\sum_{E}^{(O-E)^{2}}$
Work:

$$
\begin{aligned}
& =\frac{(64-58.5)^{2}}{58.5}+\frac{(89-94.5)^{2}}{94.5}+\ldots 0 . \\
& =3.15
\end{aligned}
$$

- There Is not convincing evidence that there is a difference between the true distributions of color of Haribo an Great Value Gunmies

7. Explain how this test is different from a chi-square test for goodness of fit?
8. Interpret the P-Value you calculated above:

Assuming \qquad in the true distributions of the color for Haribo and Great Value, there is a
\qquad probability of observing differences in the distributions of responses as \qquad than the ones in the study.
7. Explain how this test is different from a chi-square test for goodness of fit?

We have two samples from two populations
X^{2}-GOF has one sample from 1 population (compared to a known distrib)
8. Interpret the P-Value you calculated above: Assuming $\cap 0$ difference in the true distributions of the color for Haribo and Great Value, there is a .52 probability of observing differences in the distributions of responses as large orlargern than the ones in the study.

Expected
counts
x^{2} Homogeneity
$x^{2} G O F$
typotheses: Ho. There is no difference in the distribution in the categorical variable distribution for pop. 1 and pop. 2
H_{a} - There is a difference. -
Expected counts
x^{2} Homogeneity $x^{2} G O F$ in the categorical variable distribution for pop. 1 and pop. 2 . H_{a} - there is a difference - -

$$
\begin{gathered}
\text { Expected } \\
\text { counts }
\end{gathered}=\frac{\text { Row Total } \times \text { Column Total }}{\text { Table Total }} d f=(\text { (vow s-1) (columns } 1)
$$

x^{2} Homogeneity

$$
x^{2} G O F
$$ in the categorical variable distribution for pop. 1 and pop. 2

H_{a} other is a difference. -

$$
\begin{aligned}
& \text { Expected } \\
& \text { counts }
\end{aligned}=\frac{\text { Row Total } \times \text { column Total }}{\text { Table Total }} d f=(\text { rows -1 })(\text { columns -1 })
$$

x^{2} Homogeneity 2 samples, 1 variable X^{2} GOV 1 sample, 1 variable

Music Preferences between

Californians and Michigonians Michiganites?

What is your music preference? The chi-square test for homogeneity

Do high school students in Michigan and California have the same music preferences? We used the Census at School ${ }^{\circledR}$ website to select separate random samples of 100 high school students from Michigan and 100 high school students from California. Students were asked, "What is your favorite music genre?" The twoway table summarizes their responses.

		Michigan	California	Total
	Country	12	4	16
Favorite music genre	Pop	15	14	29
	Rap	21	22	43
	Rock	7	10	17
	Other	45	50	95
	Total	100	100	200

Do these data provide convincing evidence at the $\alpha=0.05$ level that the distributions of favorite music genre differ for high school students in Michigan and California?

STATE
Ho: There is no difference in the distributions of favorite music genre for high school students in Michigan? Calif.
H_{a}. There is a difference in the distributions of favorite music

$$
\alpha=0.05
$$

Chi-Square test for Homogeneity
Random Independent random samples of Students from michigan and Calif.
$10 \% 100<10^{\%}$ of all Nehigaan high school $100<10^{\prime \prime}$ of all Calif. High School

Large
Counts
All expected Counts ≥ 5 (see table)

For this test to run properly, there must
be at least 2 rows and
at least 2 columns $\left(\begin{array}{c}\text { will not work for } \\ x^{2} \text { for Goodness of fit) }\end{array}\right.$

Because the P-Value of $0.303>\alpha=.05$ we fail to reject H_{0}

There is not convincing evidence of a difference in the distributions of fave music genre for HS. Students in Michigan and California.
11.2 27-35 (odds)

