Warm Up

- more Inference Selection Practice
(5 and 6 only)
- CI or Significance Test ?
- mean or Proportion?
-2 sample or 1
-Paired
-unpaired

Researchers were studying how playing a dancing video game impacts heart rate. They measured the heart rates (in beats per minute) of 15 subjects before they danced a song and again after they finished dancing the song. They want to use these results to estimate the average difference between before and after heart - rates.

Which of these inference procedures is most appropriate?
Choose 1 answer:

(B)

A two-sample t-interval for the difference of meansA paired t-interval for the mean difference

A two-sample z-interval for the difference of proportions

At -interval for slope

INCORRECT
A \boldsymbol{z}-interval for a proportion

The researchers aren't categorizing the heart rates, so proportions wouldn't be appropriate.

INCORRECT

A two-sample t-interval for the difference of means
The before heart rates are not independent of the after heart rates, so we shouldn't treat them as two separate samples.

CORRECT (SELECTED)

A paired t-interval for the mean difference
The researchers recorded two measurements on each subject. They should calculate the difference between the two heart rates for each subject, and do a test on the mean of those differences.

A website streams movies and television shows to millions of users. Employees know that the average time a user spends per session on their website is 2 hours. The website changed its design, and they wanted to know if the average session length was longer than 2 hours. They randomly sampled 100 users and
recorded their session lengths.
Which of these inference procedures is most appropriate?

Choose 1 answer:

(A) A paired t-test for the mean difference
(B)

A two-sample t-test for the difference of means
(C)

At-test for a mean
(D)

A \boldsymbol{z}-test for a proportion
(E)

A two-sample \boldsymbol{z}-test for the difference of proportions
\odot
INCORRECT
A paired t-test for the mean difference
The employees collected one data point (the session length) for each user in the sample, so they don't have paired data.

INCORRECT

A two-sample t-test for the difference of means
The employees are looking at one sample of data, not two.

CORRECT (SELECTED)

Attest for a mean
The employees are interested in the average session length, so t procedures for a mean are appropriate. They are comparing the mean of a single sample to a hypothesized value, so twosample procedures aren't appropriate.

Felipe is curious if there is a relationship between a runner's age and their finishing time in a recent marathon. He takes a random sample of finishers and records the age (in years) and the finishing time (in minutes) for each of those sampled.

Which of these inference procedures is most appropriate?
Choose 1 answer:A two-sample \boldsymbol{z}-test for the difference of proportions
A z-test for a proportionA paired t-test for the mean differenceA t-test for slopeA two-sample t-test for the difference of means

Felipe is curious if there is a relationship between a runner's age and their finishing time in a recent marathon. He takes a random sample of finishers and records the age (in years) and the finishing time (in minutes) for each of those sampled.

Which of these inference procedures is most appropriate?

Choose 1 answer:
(A)

A two-sample \boldsymbol{z}-test for the difference of proportions
(B)

A z-test for a proportionA paired t-test for the mean difference

At-test for slope
(E)

A two-sample t-test for the difference of means

In ouvaual

 CHON

\leq
? 7

Agenda

* Catch our breath before going down the home stretch of AP Stats (cholla, choli)
= Start to review all of AP Stats before we do a more methodical review in late February.
\square

Advice - Do a quick look back in your
[will he reestablish connections]

- check answers as you go
- Struggling a bit is ok
- Look at partial (my messy) Solutions au some

| Yesterday AP $3.1 \rightarrow 3.10$, | 33 |
| :--- | :--- | :--- | :--- |
| Today
 (and tonight) | AP $3.11 \rightarrow 3.25,34$ |
| Tomorrow
 Shorter
 classes $)$
 AP $3.26 \rightarrow 3.30,35$ | Work to
 be
 turned
 in Monday |

Brain Break
in about 20 minutes

February 07, 2019
\square

Angelica surveyed 150 people in the 20-29 age group and 150 people in the $30-39$ age group about whether or not they were vegetarian. She wants to estimate the difference between the percentage of people in each group who are vegetarian.

Which of these inference procedures is most appropriate?

A t-interval for slope

A two-sample z-interval for the difference of proportions

A z-interval for a proportion

A two-sample t-interval for the difference of means

A t-interval for a mean

INCORRECT

A t-interval for slope
This type of interval is useful for estimating the slope of a regression line, but Angelica isn't looking at the relationship between two quantitative variables.
($)$ CORRECT (SELECTED)
A two-sample z-interval for the difference of proportions
Angelica has two groups (150 people from each age group) and she's comparing a categorical variable (vegetarian or not) between the two groups, so proportions are appropriate.

INCORRECT

$\mathrm{A} \boldsymbol{z}$-interval for a proportion
Angelica's data came from two groups (150 people from each age group), so two-sample procedures are appropriate.

A two-sample t-interval for the difference of means

Angelica is looking at a categorical variable, so using proportions is more appropriate than means.

INCORRECT
A t-interval for a mean

Angelica is looking at a categorical variable, so using proportions is more appropriate than means. Also, she has two groups, so two-sample procedures are appropriate.

INCORRECT
A \boldsymbol{z}-test for a proportion
The employees are interested in the average session length, so they should use t procedure for a mean. They aren't categorizing the lengths, so proportions wouldn't be appropriate.

INCORRECT

A two-sample \boldsymbol{z}-test for the difference of proportions
The employees are looking at one sample of data, not two. Also, they are interested in the average session length, so they should use t procedures for a mean. They aren't categorizin; the lengths, so proportions wouldn't be appropriate.

INCORRECT
A two-sample \boldsymbol{z}-interval for the difference of proportions

The researchers aren't categorizing the heart rates, so proportions wouldn't be appropriate.

INCORRECT
A t-interval for slope
This would be useful if the researchers were interested in the relationship between before and after heart rates in a scatter plot, but it wouldn't be the best way to estimate the average difference.

CORRECT (SELECTED)

A paired t-interval for the mean difference
The researchers recorded two measurements on each customer. They should calculate the difference between the two scores for each customer, and do a test on the mean of those differences.INCORRECT
A two-sample z-interval for the difference of proportions
The researchers aren't categorizing the scores, so proportions wouldn't be appropriate.INCORRECT
A \boldsymbol{z}-interval for a proportion
The researchers aren't categorizing the scores, so proportions wouldn't be appropriate.incorrect
A two-sample t-interval for the difference of means

The before scores are not independent of the after scores, so we shouldn't treat them as two separate samples.

A school counselor suspects that, on average, students at their school are sleeping less than 8 hours per night. They survey a random sample of students about how many hours they slept the previous night to see if their average sleep amount is significantly less than 8 hours.

Which of these inference procedures is most appropriate?

Choose 1 answer:

A two-sample z-test for the difference of proportionsA paired t-test for the mean differenceA z-test for a proportion(D)

At-test for a meanA two-sample t-test for the difference of means

A t-test for a mean

The counselor is interested in the average sleep amount, so t procedures for a mean are appropriate. They are comparing the mean of a single sample to a hypothesized value, so twosample procedures aren't appropriate.INCORRECT
A two-sample z-test for the difference of proportions
The counselor is looking at one sample of data, not two. Also, they are interested in the average sleep amount, so they should use t procedures for a mean. They aren't categorizing the sleep amounts, so proportions wouldn't be appropriate.INCORRECT
A paired t-test for the mean difference

The counselor collected one data point (the sleep amount) for each student in the sample, so they don't have paired data.INCORRECT
A z-test for a proportion
The counselor is interested in the average sleep amount, so they should use t procedures for a mean. They aren't categorizing the sleep amounts, so proportions wouldn't be appropriate.INCORRECT
A two-sample t-test for the difference of means

The counselor is looking at one sample of data, not two.

