

EXPERIMENTAL DESTGN26

A television network conducts a weekly survey to determine the proportion of viewers who watch various programs. For the coming year, they decide to double the sample size. The main benefit of this is to
(A) reduce undercoverage bias.
(B) reduce nonresponse bias.
(C) eliminate sampling error.
(D) decrease population variability.
(E) decrease the standard deviation of the sampling distribution.

Answer: (E) The standard deviation of the sample proportions, $\sigma_{p}=\sqrt{\frac{p(1-p)}{n}}$ is reduced if the sample size n is increased. This reduces the margin of error but has no effect on possible bias. Sampling error, naturally present when sample statistics are used to estimate population parameters, can generally be reduced with larger sample sizes, but it cannot be eliminated.

EXRERIMENTALDESICN 28

Which of the following statements is incorrect?

(A) Voluntary response samples often underrepresent people with strong opinions.
(B) Convenience samples often lead to undercoverage bias.
(C) Questionnaires with nonneutral wording are likely to have response bias.
(D) There is no way to fix the results if a biased sampling method was employed.
(E) Nonresponse bias should be avoided because those who do not respond might have different views from those who do respond.

Answer: (A) Voluntary response samples, like radio call-in surveys, are based on individuals who offer to participate, and they typically overrepresent persons with strong opinions. Convenience samples, like shopping mall surveys, are based on choosing individuals who are easy to reach, and they typically miss a large segment of the population. Nonneutral wording can readily lead to response bias, and if surveyors want a particular result, they deliberately use certain wording. Always check carefully for bias before collecting data, because there is no recovery from a biased sampling method after the sample is collected. When a large fraction of those sampled fail to respond, the concern

EXPERIMENTAL DESIGN 27

A boranist is ruming an experiment on two fertilizers that require different amounts of watering. She has 40 test plots, half of which are in sumy locations, and half are in the shade. She randomly selects 10 sumny plots and 10 shady plots for which to use one fertilizer with its appropriate watering, while the remaining plots are for the other fertilizer with its appropriate watering. Of the following, which is the most important observation about dhis procedure?
(A) The variables, fertilizer and water, are confounded.
(B) The variables, fertilizer and sun, are confounded.
(C) The variables, water and sun, are confounded.
(D) No variables are confounded.
(E) There is a hidden lurking variable.

Answer: (A) When dhere is uncertainty with regard to which variable is causing an effect, we say the variables are confounded. In this experiment, it might be difficult to detormine if the difference in fertilizers or the difference in watering is the real cause of observed differences in plant growth. However, widt both sunny and shady plots for each fertilizer, fertilizer and sum are not confounded

The M t M activity from our last class.... allowed us to look at a distribution of a single categorical variable (color) with 2 or more categories [brown, yellow, orange, Green, Blue, Red].

ESSENTIAL QUESTION How do we perform significance tests for distributions of categorical variables and for relationships between categorical variables?

The chi-Square Test for Ceednees of Fit is a significance test that can help determine if a distribution of a claimed population
[Company claimed $13^{\prime \prime}$ Brown, $14^{\%}$ yellow, $20^{\%}$ orange a etc] differs from a sample distribution.

The Big Picture: Where Chapter 11 Fits

- Chapters 8-12 cover all of AP Statistics Topic Outline IV. Statistical inference: Estimating population parameters and testing hypotheses.
- About 30-40\% of questions on the AP exam
- Chapters 11 focuses on inference for categorical data:
- Section 11.1 extends on the one-sample z test for a proportion (Section 9.2) by allowing more than 2 categories for the variable.
- Section 11.2 extends on the two-sample z test for a difference in proportions (Section 10.1) by allowing comparisons of more than 2 populations/treatments and allowing more than 2 categories for the variable.

Chapter 11: Inference for Distributions of Categorical Data
 11.1 Chi-Square Tests for Goodness of Fit 2 Days
 11.2 Inference for Two-way Tables 2 Days
 Review, FRAPPY, and Test 2 Days

$$
\begin{gathered}
\text { which puts the Ch. } 11 \text { test on } \\
\text { Tuesday, Feb } 19 \text { th }
\end{gathered}
$$

Chapter 11: The Big Ideas

- Chi-square tests are about categorical variables
- Three types of chi-square tests
- Goodness of Fit: Distribution of 1 categorical variable in 1 population
- Homogeneity: Distribution of 1 categorical variable for 2 or more populations/treatments
- Independence: Relationship between 2 categorical variables in 1 population

No CI's this chapter

Chi-Square tests are similar to other tests.

- Four Step process
- Need to Check Conditions
but there are differences

\checkmark STATE appropriate hypotheses and COMPUTE the expected counts and chi-square test statistic for a chi-square test for goodness of fit.
\checkmark STATE and CHECK the Random, 10%, and Large Counts conditions for performing a chi-square test for goodness of fit.
\checkmark CALCULATE the degrees of freedom and P-value for a chi-square test for goodness of fit.

Last class we assumed that the large bag of M\&M'S was the population. We investigated if the distribution of the colors differed from the claimed distribution.

Stating Hypotheses

Ho: The distribution of color in the large bag of M\&M'S Milk Chocolate Candies is the same as the claimed distribution.

Ha: The distribution of color in the large
 bag of M\&M'S Milk Chocolate Candies is not the same as the claimed distribution.

In this chapter, there will be no two-sided tests.

The alternative hypothesis will always
be "the null hypothesis is not correct"

We can also write the hypotheses in symbols.
$H_{0} p_{\text {boom }}=0.125, p_{\text {cd }}=0.125, p_{\text {yellow }}=0.125, p_{\text {gran }}=0.125, p_{\text {orange }}$ $=0.25, p_{\text {blue }}=0.25$
H_{6} : At least two of the p_{i} 's are incorrect
where $p_{\text {color }}=$ the true proportion of M\&M'S Milk Chocolate Candies in the large bag of that color

A third way to write hypotheses:
He: the company's claimed distribution of color is correct for this bag of Mun's.

Ha: The company's claimed distribution of color is incorrect for this log of M\{M'S.

Comparing Observed and Expected Counts: The Chi-Square Test Statistic

How many candies of each color should we expect to find in a sample of 60 candies? We use the claimed proportions as the truth:

Brown:	$(60)(0.125)=7.5$	Green: $(60)(0.125)=7.5$
Red:	$(60)(0.125)=7.5$	Orange: $(60)(0.25)=15$
Yellow: $(60)(0.125)=7.5$	Blue: $(60)(0.25)=15$	

categories $1,2,3$,

Calculating Expected Counts in a Chi-Square Test for Goodness of Fit

The expected count for category i in the distribution of a categorical variable is

$$
n p_{i}
$$

where p_{i} is the relative frequency for category i specified by the null hypothesis.

How To Pronounce?
Walking into a room full of statisticians and referring to the "chai" square test statistic will result in immediate loss of credibility.
["chain" should only be used when ordering a drink at starbucks.]
please help your bioliogy teachers with this one!

Comparing Observed and Expected Counts:
The Chi-Square Test Statistic

Color	Observed	Expected
Brown	12	7.5
Red	3	7.5
Yellow	7	7.5
Green	9	7.5
Orange	9	15.0
Blue	20	15.0

$\%$

Comparing Observed and Expected Counts: The Chi-Square Test Statistic

Color	Observed	Expected
Brown	12	7.5
Red	3	7.5
Yellow	7	7.5
Green	9	7.5
Orange	9	15.0
Blue	20	15.0

How likely is it that differences this large or larger would occur just by chance in random samples of size 60 from the population distribution claimed by Mars, Inc.?

Color	Observed	Expected
Brown	12	7.5
Red	3	7.5
Yellow	7	7.5
Green	9	7.5
Orange	9	15.0
Blue	20	15.0

How likely is it that differences this large or larger would occur just by chance in random samples of size 60 from the population distribution claimed by Mars, Inc.?

The statistic we use to make the comparison is the chi-square test statistic χ^{2}.

The chi-square test statistic is a measure of how far the observed counts are from the expected counts. The formula for the statistic is

$$
\chi^{2}=\sum \frac{(\text { Observed count }- \text { Expected count })^{2}}{\text { Expected count }}
$$

where the sum is over all possible values of the categorical variable.

Why divide by the expected count?
We are interested in how far away the observed count is from the expected

$$
\begin{aligned}
x^{2}= & \sum \frac{(\text { observed-Expected })^{2}}{\text { Expected }} \\
& { }_{\text {always include summation Symbol. }}
\end{aligned}
$$

Observed counts, not observed proportions

The chi-square test statistic is a measure of how far the observed counts are from the expected counts. The formula for the statistic is

$$
\chi^{2}=\sum \frac{(\text { Observed count }- \text { Expected count })^{2}}{\text { Expected count }}
$$

where the sum is over all possible values of the categorical variable.

A typical calculation, by hand, look like this:

$$
\chi^{2}=\frac{(12-7.5)^{2}}{7.5}+\frac{(3-7.5)^{2}}{7.5}+\frac{(7-7.5)^{2}}{7.5}+\frac{(9-7.5)^{2}}{7.5}+\frac{(9-15)^{2}}{15}+\frac{(20-15)^{2}}{15}
$$

The chi-square test statistic is a measure of how far the observed counts are from the expected counts. The formula for the statistic is

$$
\chi^{2}=\sum \frac{(\text { Observed count }- \text { Expected count })^{2}}{\text { Expected count }}
$$

where the sum is over all possible values of the categorical variable.

For Jerome's data, we add six terms-one for each color category:

$$
\begin{aligned}
& \chi^{2}=\frac{(12-7.5)^{2}}{7.5}+\frac{(3-7.5)^{2}}{7.5}+\frac{(7-7.5)^{2}}{7.5}+\frac{(9-7.5)^{2}}{7.5}+\frac{(9-15)^{2}}{15}+\frac{(20-15)^{2}}{15} \\
&=2.7+2.7+0.03+0.30+2.4+1.67 \\
&=9.8 \\
& \text { always positive? }
\end{aligned}
$$

The Chi-Square Distributions and P-Values

If we used software to simulate taking 1000 random samples of size 60 from the population distribution of M\&M'S Milk Chocolate Candies given by Mars, Inc. Here are the values of the chi-square test statistic for these 1000 samples.

The Chi-Square Distributions and P-Values

If we used software to simulate taking 1000 random samples of size 60 from the population distribution of M\&M’S Milk Chocolate Candies given by Mars, Inc. Here are the values of the chi-square test statistic for these 1000 samples.

The Chi-Square Distributions and P-Values

If we used software to simulate taking 1000 random samples of size 60 from the population distribution of M\&M'S Milk Chocolate Candies given by Mars, Inc. Here are the values of the chi-square test statistic for these 1000 samples.

Larger values of χ^{2} give more convincing evidence against H_{0} and in favor of H_{a}.

We used software to simulate taking 1000 random samples of size 60 from the population distribution of M\&M’S Milk Chocolate Candies given by Mars, Inc. Here are the values of the chi-square test statistic for these 1000 samples.

Larger values of χ^{2} give more convincing evidence against H_{0} and in favor of H_{a}.

Our estimated P-value is $87 / 1000=0.087$

In 87 of the 1000 simulated samples, the value of the chi-square test statistic was at least 9.8-the observed test statistic from Jerome's class.

A chi-square distribution is defined by a density curve that takes only nonnegative values and is skewed to the right. A particular chi-square distribution is specified by its degrees of freedom.

A chi-square distribution is defined by a density curve that takes only nonnegative values and is skewed to the right. A particular chi-square distribution is specified by its degrees of freedom.

- As the degrees of freedom (Cf) increase, the density curves become less skewed.
- The mean of a particular chisquare distribution is equal to its degrees of freedom.
- For If > 2, the mode (peak) of the chi-square density curve is at $\mathrm{df}-2$.

The x^{2} distributions are the third and final type of distribution that you will use regularly.
[Nismalst t-distributions, x^{2} distrib.]
\square

There are 6 color categories for M\&M's ${ }^{\star}$ Milk Chocolate Candies, so $\mathrm{df}=6-1=5$.

The P-value is the probability of getting a χ^{2} value of as large as or larger than 9.8 when H_{o} is true.
^ TEST STATISTIC

\boldsymbol{P}			
df	$\mathbf{. 1 5}$	$\mathbf{. 1 0}$	$\mathbf{. 0 5}$
4	6.74	7.78	9.49
5	8.12	9.24	11.07
6	9.45	10.64	12.59

The P-value for a test based on Jerome's data is between 0.05 and 0.10 .

We now have 3 calculator functions that can help us find areas for different distributions
normaledf
$t_{\text {cd }}$

Conditions for Performing a Chi-Square Test for Goodness of Fit

Random: The data come from a random sample from the population of interest.
10% : When sampling without replacement, $n<0.10 \mathrm{~N}$.
Large Counts: All expected counts are at least 5.

Why Check

Random: So... we can generalize to the appropriate population
10. : So ... sampling without replacement is ok.

Large Counts: So so the sampling distribution
is approximately a
chi-square distribution
and we can use x^{2} to
find a P-value

The Chi-Square Test for Goodness of Fit

Suppose the conditions are met. To perform a test of H_{0} : The stated distribution of a categorical variable in the population of interest is correct compute the chisquare test statistic:

$$
\chi^{2}=\sum \frac{(\text { Observed count }- \text { Expected count })^{2}}{\text { Expected count }}
$$

where the sum is over the k different categories. The P-value is the area to the right of χ^{2} under the chi-square density curve with $k-1$ degrees of freedom.

A chi-square density curve is a good model for the sampling distribution of the chi-square statistic but only when the sample size is large enough that the expected counts are all at least 5 $\left[\begin{array}{c}\text { similar to Large Counts Condition] } \\ \text { for } \hat{p}\end{array}\right.$

The color of Reese's Pieces ${ }^{\circledR}$

The Hershey Company makes Reese's Pieces and claims the distribution of colors is as follows: 50\% orange, 25\% brown, and 25\% yellow. Skeptical of this claim, Trey purchases a very large bag of Reese's Pieces and selects a random sample of 80 pieces. Here are the results:

Color	Orange	Brown	Yellow
Count	31	22	27

(a) State the hypotheses that Trey should test.

The color of Reese's Pieces ${ }^{\text {® }}$
The Hershey Company makes Reese's Pieces and claims the distribution of colors is as follows: 50% orange, 25% brown, and 25\% yellow. Skeptical of this claim, Trey purchases a very large bag of Reese's Pieces and selects a random sample of 80 pieces. Here are the results:

Color	Orange	Brown	Yellow
Count	31	22	27

(a) State the hypotheses that Trey should test.

(b) Calculate the expected count for each of the possible outcomes.
(c) Calculate the value of the chi-square test statistic.
(b) Calculate the expected count for each of the possible outcomes, If H_{0} is true

$$
\begin{aligned}
& 80(.5)=40 \text { for orange } \\
& 80(.25)=20 \text { for brown } \\
& 80(.25)=20 \text { for yellow }
\end{aligned}
$$

(c) Calculate the value of the chi-square test statistic.

31	22	27
40	20	20

$x^{2}=\sum \frac{(0-E)^{2}}{E}$

$$
x^{2}=\frac{(31-40)^{2}}{40}+\frac{(22-20)^{2}}{20}+\frac{(27-20)^{2}}{20}=4.615
$$

Ap Exam Tip
Dort round the expected counts! (just because you think they should)
be integers

- it's the average number of observations in a given category in many many random samples.
(d) Find the P-value using Table C, then calculate a more precise value using technology.

$$
\begin{aligned}
d f=3-1=2 \rightarrow & \text { Table } C \\
& \text { P-Value is between } \\
& 0.05 \text { and } 0.10
\end{aligned}
$$

(d) Find the P-value using Table C, then calculate a more precise value using technology.

$$
\begin{aligned}
& d f=3-1=2 \\
& \begin{array}{r}
\text { Table } C \\
\\
\text { P-Value is betwe }
\end{array} \\
& 0.05 \text { and } 0 .
\end{aligned}
$$

See your
Ch 10 Test
$11.1 . \cdots 1,3,5,7,22$

Study pp.709-716
$\begin{array}{ll}F R & \begin{array}{l}E \\ p\end{array} \frac{1}{2} \\ & \end{array}$

