Which Inference Method Do We Use?

Work to be shown on Free Response Questions

1. Hypotheses: In words and in symbols
2. Statement and verification of assumptions
3. Name of procedure (or formula), with degrees of freedom, if applicable
4. Sketch of density function with null hypotheses (H_{0}) and sample marked
5. $z / t /$ chi-square $\left(\chi^{2}\right)$ calculation (formula) with substituted values and result (mechanics)
6. P-value from calculator or table and decision (reject $H_{0} /$ not enough evidence to reject H_{0})
7. State your conclusion in context of the problem

We are 95% confident that the interval from 25% to 32% captures the (parameter in context) true proportion of people in the population that scored a 5 on the AP Exam.

Interpret Confidence LEVEL
 95\%

If we take many sample of size 800 (n) from this populations, about 95% of them will result in an interval that captures the (parameter in context) true proportion of people in the population that scored a 5 on the AP Exam.

Interpret the standard error of a statistic

$$
S E(p)=0.025
$$

When taking samples of size 800 and calculating the sample proportion, these sample proportions will typically be 2.5% away from the true proportion of people in the population that scored a 5 on the AP Exam.
$H_{o}: p=0.80 \quad H_{a}: p \neq 0.80 \quad p=$ true population proportion of free throws that Rickey Bobby makes
Conclusion of Significant Test $\quad p-v a l u e=0.0075$
$p-$ value $=0.0075<0.05=\alpha$, reject the H_{o}
We have convincing evidence that the (H_{a} with parameter with context) true population proportion of free throws that Ricky Bobby makes is not equal to 80%.

Interpret the P-value $\quad p$-value $=0.0075$
Assuming the true proportion of the shots Ricky Bobby makes is 0.80 (H_{o} is true) there is a 0.0075 (p-value) probability of getting a sample proportion of 0.64 (sample statistic we got) or one that is more extreme

Type I Error: H_{o} is true and we make a mistake! Type II Error: H_{o} is false and we make a mistake!
Interpret Type I error: \quad We conclude that Ricky Bobby lied about making 80% of his free throws; when in reality he really DOES make 80\%.

Interpret Type II error: We do not have enough evidence to conclude Ricky Bobby makes less than 80% of his free throws; when in reality he does not make than 80%.

Interpret Power: \quad power $=0.35$
Given that Rickey Bobby really doesn't make 80% of his shots, when sampling 100 shots, there is a 35% chance that we will correctly reject the null and find enough evidence to conclude that he does not make 80% of his free throws.
$P($ Type I error $)=P\left(\right.$ reject $H_{o} \mid H_{o}$ is true $)=\alpha=$ significance level
$P($ Type II error $)=P\left(\right.$ fail to reject $H_{o} \mid H_{o}$ is false $)=\beta$
Confidence Level $=P\left(\right.$ fail to reject $H_{0} \mid H_{o}$ is true $)=1-\alpha$
Power $=P\left(\right.$ correctly reject a false $\left.H_{o}\right)=P\left(\right.$ reject $H_{o} \mid H_{o}$ is false $)=1-\beta$

Comments and things to watch out for!

10\% Condition

This is probably not needed, and you could skip on the free response section. It hasn't been a requirement \leftarrow on free response question in a very long time. Also, if you check the 10% condition on an experiment, it could cost you a point! I personally would not skip it. But decide for yourself!

Normal Check

This is a check for normality of the sampling distribution for z and t tests (not χ^{2}). You should state the word normal for the check, but do NOT state that the sample data is normal (it isn't). Rather state that the sample data is symmetric with no outliers.

Name the Test vs. Formula for the Test

You must give the formal name of the test OR the formula for the statistic/conf. interval. You do not need to do both. Give the name as it is easier and avoid the formula as it is easy to mess up details/notation.

Don't forget linkage

Explicitly comparing the p-value to the alpha value is ALWAYS required. Don't forget to write that step.

Be careful how you word your conclusions.

1. Never reference the sample in your parameter, hypotheses, or your conclusion. Don't use wording that implies you are talking about the sample!
2. You MUST MUST MUST reference the parameter in your conclusion. Have the word MEAN, PROPORTION, or SLOPE in your conclusions for your z and t procedures. (chi-sq you word differently).

Good Wording

We are 94% confident that the interval from 44.1% to 49.9% captures the true population proportion of U.S. women that would say they don't get enough time to themselves.

Bad Wording

We are 94% confident that the interval from 44.1% to 49.9% captures the true population proportion of U.S. women that said they don't get enough time to themselves.
(this references the women in the sample)

Bad Wording

We are 94% confident that the interval from 44.1% to 49.9% captures the true number of U.S. women that would say they don't get enough time to themselves.
(this doesn't use the word proportion)

