Homework questions

(1) Use the recursive formula
to list the first 5 terms $\left\{\begin{array}{l}t_{1}=10 \\ t_{n}=1\end{array}\right.$ to list the first 5 terms $\left\{\begin{array}{l}t_{n+1}=t_{n}+20\end{array}\right.$ $10,30,50,70,90$
(2) Use the explicit formula, $t_{n}=2(3)^{n}$ to a) list the first 4 terms b) Write its recursive formula.

$$
n=1 \quad 6
$$

$$
\left\{\begin{array}{l}
t_{1}=6 \\
t_{n+1}=3 t_{n}
\end{array}\right.
$$

3
Without using any type of a calculator, make a quick sketch of each graph below. Label the y-intercept.

$$
y=5(3)^{x}
$$

$$
y=10\left(\frac{1}{2}\right)^{x}
$$

$$
y=\frac{1}{10}(5)^{x}
$$

(1) suppose $y=200(1.02)^{*}$ represents a
(a) population of arts growing by a constant percentage. What percent
 is the population growing by?
(b) What is the percent growth if 1 . $176^{1 \%}$
a) What if it was $y=1000(.7)^{x}$? $100^{\circ}-30^{\prime \prime}=70^{\prime \prime}$

(出
uppose $y=200(1.02)^{\dagger}$ represents a
(a) population of arts growing by a constant percentage. What percent is the population growing by?
(b) what is the percent growth if the equation was $y=50(1.26)^{x}$?
c) What if it was $y=10000(.7)^{x}$?

53 Simplify without negative exponents
a) $10 x^{3} \cdot x^{\prime} y^{2}=10 x^{4} y^{2}$
b) $(3 x)^{-1}=\frac{1}{(3 x)^{1}}=\frac{1}{3 x}$
c) $\begin{aligned} & \left(x^{3} y\right)^{-2} \\ & \left(x^{3}\right)^{-2} y^{-2}\end{aligned}=\frac{1}{\left(x^{3} y\right)^{2}}=\frac{1}{x^{6} y^{2}}$

ing sheet
$x+56 d d\left(x^{-1} \cdot y^{2}\right)^{3}=\left(x^{-1}\right)^{3}\left(y^{2}\right)^{3}=x^{-3} y^{6}=\frac{y^{6}}{x^{3}}$

$$
\begin{gathered}
\text { e } \begin{array}{c}
\left(8 \times 10^{5}\right)\left(16 \times 10^{-2}\right)=12.8 \times 10^{3}=1.28 \times 10^{4} \\
8 \cdot 10^{5} \cdot 1.6 \cdot 10^{-2} \\
\bullet \\
f \quad \frac{4 \times 10^{8} 1}{5 \times 10^{8} 10^{2}}=0.8 \cdot \frac{1}{10^{2}}=0.8 \times 10^{-2} \\
8 \times 10^{-3}
\end{array}
\end{gathered}
$$

$\left(\frac{y^{2}}{x}\right)^{3}$

(1) Table to Equation $\quad y=a b^{x}$

x	y
1	3.2
2	8
3	20
4	50

$$
\begin{aligned}
& y=3.2(2.5)^{x-1} \\
& y=\sum_{y=1.28}(2.5)^{x}
\end{aligned}
$$

Very similar to their cousin, the Sequences

(3)

In this question you will expand your skills. Think of it as a puzzle in which you are using clues to create an exponential equation.

(4)

$$
B B
$$

LCQ

Assignment
A...121b, 123, 125
B...35, 48, 61, 64

A-54 a substition method work well here

$$
\begin{array}{r}
\begin{array}{r}
y \pm 3 x=-10 \\
-3 x \\
y=-3 x-10
\end{array} \\
5 x-[-3 x-10]=2 \\
5 x+3 x+10=2 \\
8 x+10=2
\end{array}
$$

$$
8 x=-8
$$

$$
x=-1
$$

Solution $(-1,-7)$
$A-54 b$

$$
\begin{aligned}
& 6 x=7-2 y \\
& 4 x+y=4 \\
& y=-4 x+4 \\
& 6 x=7-2[-4 x+4] \\
& 6 x=7+8 x-8 \\
& 6 x=8 x-1 \\
& \frac{-8 x}{-8 x} \\
&-2 x=-1 \\
& x=\frac{1}{2}
\end{aligned}
$$

$$
y=-4\left(\frac{1}{2}\right)+4
$$

A-89 $\begin{gathered}\text { Recursive } \\ \text { Sequences }\end{gathered}$
(a) $t_{1}=-3-5$ sequence

$$
t_{n+1}=-2 \cdot t_{n}
$$

$$
-3,6,-12,24,-48
$$

b)

$$
\begin{aligned}
& t_{1}=8 \\
& t_{n+1}=t_{n}-5
\end{aligned}
$$

$$
8,3,-2,-7,-12
$$

c)

$$
\begin{aligned}
t_{1} & =2 \\
t_{n+1} & =\left(t_{n}\right)^{-1} \\
& =\frac{1}{t_{n}}
\end{aligned}
$$

$$
2, \frac{\frac{1}{2}}{2}, 2, \frac{\frac{1}{2}}{2}, 2
$$

$$
A-102
$$

(a) $\left(2 m^{3}\right)\left(4 m^{2}\right)=8 m^{5}$
d) $\left(-2 x^{2}\right)^{3}$
(b) $\frac{6 y^{5 / y^{3}}}{3 y^{2}}=2 y^{3}$

$$
=(-2)^{3}\left(r^{2}\right)^{3}
$$

$$
-8 x^{6}
$$

(c) $\frac{-4 y^{2}}{6 u^{7}}=-\frac{2}{3 y^{5}}$

$$
A-105
$$

a)

$$
\begin{aligned}
(x+2)(x+3) & =x^{2}-10 \\
x^{2}+3 x+2 x+6 & =x^{2}-10 \\
5 x+6 & =-10 \\
5 x & =-16 \\
x & =-\frac{16}{5}
\end{aligned}
$$

multiply all term by 6
b)

$$
\begin{aligned}
& \frac{1}{2} x+\frac{1}{3} x-7=\frac{5}{6} x \\
& 3 x+2 x-42=5 x \\
& 5 x-42=5 x \\
&-5 x
\end{aligned}
$$

$$
-42=0
$$

Never true
so there are no Solutions

two solutions

Solutions
d)

$$
\begin{aligned}
& \frac{x+1}{3}=\frac{x}{2} \quad \text { crossitiply } \\
& 2(x+1)=3 x \\
& -2 x+2=3 x \\
& 2=x \\
& x=2!1!
\end{aligned}
$$

Not $2=x$
$A-112 \quad t_{n}=5.2^{n}$
$5 \cdot 2^{n}=200$
divide by 5
graph on Gdx to

$$
2^{n}=40
$$ find interseatral $n \approx 5.321$

so 200 is nos onve of the ferms

Appendix B
|B-1|
a) $\left(3 x^{2} y z^{4}\right)^{2}=9 x^{4} y^{2} z^{8}$
b) $\left(\frac{r^{2} s}{r s^{3} t}\right)^{3}=\left(\frac{r}{s^{2} t}\right)^{3}=\frac{r^{3}}{s^{6} \cdot t^{3}}$
c) $(3 m+7)(2 m-1)=6 m^{2}-3 m+14 m-7=6 m^{2}+11 m-7$
d) $(x-3)^{2}=(x-3)(x-3)=x^{2}-3 x-3 x+9=x^{2}-6 x+9$

$$
\begin{aligned}
& \text { DVD loses } 60 \% \text { every year } \\
& \text { start at } \$ 80
\end{aligned}
$$

a) Multiplier $0.4 \longleftarrow 100 \%-60^{\circ}=40 \%$
b) $y=80(0.4)^{1}=\frac{43}{32}$ after 1 year

$$
\begin{aligned}
& y=80(0.4)=32 \text { after } 4 \mathrm{yes} \\
& y=80(0.4)^{4}=\$ 2.05 \text { a }
\end{aligned}
$$

c) $V(t)=80(0.4)^{t}$
d) In theory it will never go

