

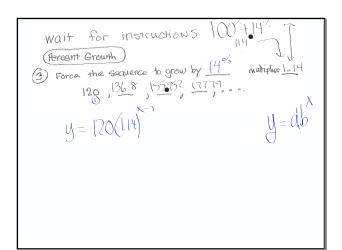
Make sure you know each other's names.
(in your group)
of 2 or 4

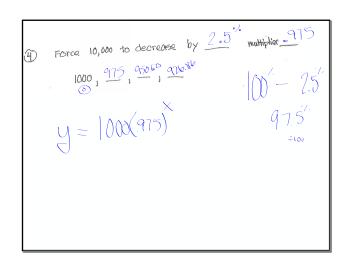
Then pick up the Warm Up

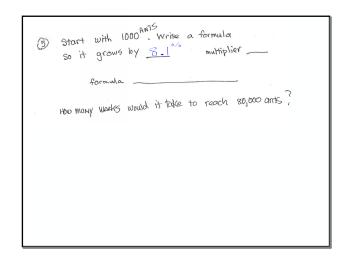
With each function: underline if its a linear function, circle if its an exponential function and leave blank if it is neither $f(x) = 5(2x) \qquad f(x) = 3x^2 \qquad f(x) = 3x - 2 \qquad f(x) = 3 \cdot (\frac{1}{3}) \times \frac{1}{3} = \frac{1}{3} \cdot (\frac{1$

A bacteria decays at a rate of 30% per hour. If there are 2000 bacteria to start with:

a) Write an equation that will represent the number after t hours.


the 2000 (70)


b) How much will be left in 8 hours?


f(8) = 2000 (70)

c) Approximately, when will there be only 2 bacteria left?

The about 194 hours of the control of the control

New recording sheet, ibou

with one assignment so far..... solutions are available (green)

Four Day Unit

Transfer Skill Review from Alg/Geom before starting Chapter 2

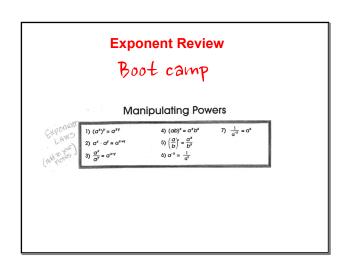
what if exponents are negative ????

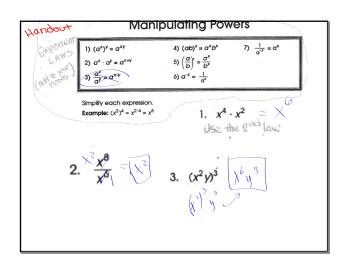
What if there were negative exponents ?

$$\left(\frac{3}{5}\right)^{-1} = \left(\frac{5}{3}\right)^{-1} = \left(\frac{5}{3$$

$$\left(\frac{1}{y}\right)^{-2} = \left(\frac{4}{t}\right)^{2} = \frac{16}{t} = \frac{1}{3^{-1}} = \frac{1}{3^{-1}}$$

$$\left(\frac{x}{y}\right)^{-3} = \left(\frac{y}{x}\right)^{3} = \frac{1}{x^{-2}} = \frac{1}{3^{-1}}$$


$$\left(\frac{3x}{y}\right)^{-2} = \left(\frac{y}{3x}\right)^{2} = \frac{3}{3x}$$


$$\frac{3}{e^{-2}} = \frac{3}{3}e^{-2}$$

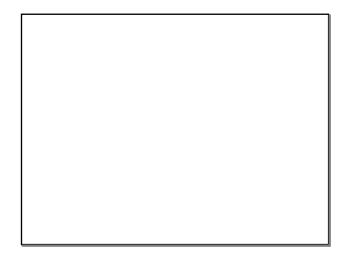
$$a^{\frac{1}{2}} \cdot a^{\frac{3}{2}}b^{\frac{1}{4}} = a^{\frac{1}{4}}a^{\frac{3}{2}} \cdot b^{\frac{1}{4}} = a^{\frac{1}{4}}b^{\frac{1}{2}}$$

$$x^{\frac{1}{4}}y^{\frac{1}{4}} \cdot x^{\frac{1}{2}}y^{\frac{1}{4}} = x^{\frac{1}{4}}y^{\frac{1}{4}} = x^{\frac{1}{4}}y^{\frac{$$

Each pair should pick up and work on one handout.

4.
$$\left(\frac{x}{y^3}\right)^5 = \frac{x^5}{(y^9)^5} = \left(\frac{x}{y^{15}}\right)^5$$
5. $y^{15} = \frac{1}{y^{15}}$
7. $\frac{a^{61}}{a^9} = \frac{1}{a^3}$

8.
$$(2c^{2})^{3}$$
9. $\frac{n^{4} \cdot n^{6}}{n^{8} \cdot n^{2}} = \frac{\sqrt{3}}{10} = \frac{6}{7}$
10. $4a^{5} \cdot 3a^{3}$
11. $(\frac{v}{3})^{4} \cdot (\frac{5}{v})^{2}$


$$\frac{\sqrt{3}}{81} \cdot \frac{25}{\sqrt{3}} = \frac{25v^{2}}{81}$$

12.
$$(x^2)^2 = x^{-1} = \frac{1}{x^4}$$
 13. $(\frac{2}{x})^{-1} = \frac{x}{2}$

See your Ch I Test

Assignment:
is in Appendix A in the back Appendix

A....10, 23, 88, 91, 92, 116, 119, 120

4	N _{2K} 5	06K9
THERE!	$R_{24A^{2}B} = R_{AB}(7)$	$S = 56S^2A^8 = 14S^2A^4(?)$
THAT YOU	$ \begin{array}{l} T_{A^2K^4=} \\ (AK^2)(?) \end{array} $	$U_{A^3K^8} = (K^7)(7)$
0	$\sqrt{200000000000000000000000000000000000$	27A ² K ⁹ -3AK ³
2000	OA II	3711

$3A A^{16} 25A^{0} 6 3A^{3}K A^{16}$ $AK^{2} 9A^{4} A^{16} -4A^{4} A^{3}K 2K^{4}$ $-4A^{4} -8A^{3} 3A A^{16} A^{16} 2K^{4}$	-444 944 6 A3K -64× 16A
-4A4 -8A3 3A A16 A16 2K4	
	$-4A^{4} - 8A^{3} = 3A + A^{76} + A^{76} = 2K^{7}$ $-9AK^{6} = 9A^{4} = 12A^{3} - 64A^{2} + A^{16}$