NURMFIL FLUAT GUTU REFL DEGREE MP
randIntNoRep(1,19,19).

1	Aarnes, August A.
2	Bartram, Natalie B.
3	Born, Sarah E.
4	Boyd, Anna M.
5	Castro-Cuno, Michelle A.
6	Dissanayake, Thilini R.
7	Ford, Jackson P.
8	Gilbert, Brita M.
9	Insko, Ezekial K.
10	Kelley, Kai P.
11	King, Laura I.
12	Minson, Maia K.
13	Peters, Kendra E.
14	Rogers, Madison R.
15	Seidel, Aidan R.
16	Victor, Tyler M.
17	West, Carson T.
18	Wettengel, Isaiah P.
19	Wiltshire, Emily S.

\square

The claim that we weigh evidence against in a significance test is called the null hypothesis (H_{0}). The claim that we are trying to find evidence for is the alternative hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right)$.

The alternative hypothesis is one-sided if it states that a parameter is greater than the null value or if it states that the parameter is less than the null value.

The alternative hypothesis is two-sided if it states that the parameter is different from the null value (it could be either greater than or less than).

1. Are you college bound? The U.S. Bureau of Labor Statistics estimates that 69.7% of high school graduates enroll in a college or university. Bernard has great pride in the quality of his large high school. He thinks the proportion of college-bound students is greater for last year's graduating class.

State appropriate hypotheses for performing a significance test. Be sure to define the parameter of interest.

1. Are you college bound? The U.S. Bureau of Labor Statistics estimates that 69.7% of high school graduates enroll in a college or university. Bernard has great pride in the quality of his large high school. He thinks the proportion of college-bound students is greater for last year's graduating class.

State appropriate hypotheses for performing a significance test. Be sure to define the parameter of interest.

1. Are you college bound? The U.S. Bureau of Labor Statistics estimates that 69.7% of high school graduates enroll in a college or university. Bernard has great pride in the quality of his large high school. He thinks the proportion of college-bound students is greater for last year's graduating class.

State appropriate hypotheses for performing a significance test. Be sure to define the parameter of interest.

$$
\begin{aligned}
& H_{0} \cdot P=0.697 \\
& \rightarrow H_{a} \cdot P>0.697
\end{aligned}
$$

1. Are you college bound? The U.S. Bureau of Labor Statistics estimates that 69.7% of high school graduates enroll in a college or university. Bernard has great pride in the quality of his large high school. He thinks the proportion of college-bound students is greater for last year's graduating class.

State appropriate hypotheses for performing a significance test. Be sure to define the parameter of interest. the claim we weigh evidence against

- $p>0.697$ trying to find evidence for.

State appropriate hypotheses for performing a significance test. Be sure to define the parameter of interest.

$$
H_{0}: p=0.697 \longleftarrow \text { the claim we weigh }
$$

$H_{a}: P>0.697 \leftarrow$ the claim we are trying to find evidence for
where $p=$ the true proportion of all last year's graduates at Bernard's school who enroll in college or university.

$$
\prod_{i v i v e}^{\rightarrow}
$$

2. Argue with Friends. A Gallup poll report revealed that 72% of teens said they seldom or never argue with their friends. Yvonne wonders whether this result holds true in her large high school, so she surveys a random sample of 150 students at her school.
State appropriate hypotheses for performing a significance test. Be sure to define the parameter of interest.

Ho. $p=072$
H_{a}
2. Argue with Friends. A Gallup poll report revealed that 72% of teens said they seldom or never argue with their friends. Yvonne wonders whether this result holds true in her large high school, so she surveys a random sample of 150 students at her school.
State appropriate hypotheses for performing a significance test. Be sure to
define the parameter of interest.
$H_{0} 8 \quad P=0.72$
$\mathrm{H}_{a} \quad P \neq 0.72 \leftarrow$ two sided H_{a}
Where $p=$ the true proportion of teens in Yuomme's
school who rarely or never argue with their friends

CAUTION:

The hypotheses should express the belief or suspicion we have before we see the data.

AP ${ }^{\circledR}$ Exam Tip

Hypotheses always refer to a population, not to a sample. Be sure to state H_{0} and H_{a} in terms of population parameters. It is never correct to write a hypothesis about a sample statistic, such as $H_{0}: \hat{p}=0.80$ or $H_{\mathrm{a}}: \bar{x}=31$.

9. 1 Hypotiest testing in general (No formulas)
9.2 Testing claims re e proportions
9.3 Testing claims re: means

Chapter 9: Testing a Claim
9.1 Significance Tests: The Basics 9.2 Tests about a Population Proportion
9.3 Tests about a Population Mean

Review, FRAPPY!, and Test

$$
\text { Next Test • Wed. Jan. } 23^{\text {rd }}
$$

\checkmark STATE appropriate hypotheses for a significance test about a population parameter.
\checkmark INTERPRET a P-value in context.
\checkmark MAKE an appropriate conclusion for a significance test.

$$
\begin{aligned}
& \text { Interpreting } P-V \text { alues } \\
& \text { Well read page } 556 \text { together }
\end{aligned}
$$

The \boldsymbol{P}-value of a test is the probability of getting evidence for the alternative hypothesis H_{a} as strong or stronger than the observed evidence when the null hypothesis H_{0} is true.

Are you college bound? Part 2

The U.S. Bureau of Labor Statistics estimates that 69.7% of high school graduates enroll in a college or university. Bernard thinks the proportion of college-bound students is greater for last year's graduates from his large high school. He decides to perform a test of

$$
H_{0}: p=0.697 \quad H_{\alpha}: p>0.697
$$

where $p=$ the true proportion of all last year's graduates at Bernard's school who enroll in a college or university. Bernard asks a random sample of 40 of last year's graduates from his high school if they are enrolled in a college or university, and 34 say "Yes." The sample proportion enrolled in a college or university is
$\hat{p}=\frac{34}{40}=0.85$. Bernard performed a significance test and obtained a P-value of 0.018 .
(a) Explain what it would mean for the null hypothesis to be true in this setting.
(b) Interpret the P-value.
(a) Explain what it would mean for the null hypothesis to be true in this setting.
If $H_{0}: p=0.697$ is true, then
(b) Interpret the P-value.
(a) Explain what it would mean for the null hypothesis to be true in this setting.
If $H_{0}: p=0.697$ is true, then the proportion of last year's graduates at Bernard's school who
(b) Interpret the P-value.
(a) Explain what it would mean for the null hypothesis to be true in this setting.
 in a college is 0.697 (Same as National proportion)

(b) Interpret the \mathbf{P}-value.

Assuming that the proportion of last year's grads who enroll in a college is 0.697 , there is a
(a) Explain what it would mean for the null hypothesis to be true in this setting.
If $H_{0}: p=0.697$ is true, then the proportion of last year's graduates at Bernard's school who enroll in a college is 0.697 (same as National proportion)
(b) Interpret the P-value.

Assuming that the proportion of last year's grads who enroll in a college is 0.697 , there is a 0,018 probability of getting a sample proportion of 0.85 or greater just by chance in a SRS of 40 graduates.

Making Conclusions
just watch
for a moment

Making Conclusions

We make a decision based on the strength of the evidence in favor of the alternative hypothesis (and against the null hypothesis) as measured by the P-value.

Making Conclusions

We make a decision based on the strength of the evidence in favor of the alternative hypothesis (and against the null hypothesis) as measured by the P-value.

- If the observed result is unlikely to occur by chance alone when H_{0} is true (small P-value), we will "reject H_{0}."

Making Conclusions

We make a decision based on the strength of the evidence in favor of the alternative hypothesis (and against the null hypothesis) as measured by the P-value.

- If the observed result is unlikely to occur by chance alone when H_{0} is true (small P-value), we will "reject H_{0}."
- If the observed result is not unlikely to occur by chance alone when H_{0} is true (large P-value), we will "fail to reject H_{0}."

Making Conclusions

We make a decision based on the strength of the evidence in favor of the alternative hypothesis (and against the null hypothesis) as measured by the P-value.

- If the observed result is unlikely to occur by chance alone when H_{0} is true (small P-value), we will "reject H_{0}."
- If the observed result is not unlikely to occur by chance alone when H_{0} is true (large P-value), we will "fail to reject H_{0}."

How to Make a Conclusion in a Significance Test

- If the P-value is small, reject H_{0} and conclude that there is convincing evidence for H_{a} (in context).
- If the P-value is not small, fail to reject H_{0} and conclude that there is not convincing evidence for H_{a} (in context).

Making Conclusions

How small does a P-value have to be for us to reject H_{0} ?

Making Conclusions

How small does a P-value have to be for us to reject H_{0} ?

In Chapter 4, we suggested that you use a boundary of 5\% when determining whether a result is statistically significant.

Making Conclusions

How small does a P-value have to be for us to reject H_{0} ?

In Chapter 4, we suggested that you use a boundary of 5% when determining whether a result is statistically significant.

That is equivalent to saying, "View a P-value less than 0.05 as small."

Making Conclusions

How small does a P-value have to be for us to reject H_{0} ?

In Chapter 4, we suggested that you use a boundary of 5% when determining whether a result is statistically significant.

That is equivalent to saying, "View a P-value less than 0.05 as small."

Sometimes it may be preferable to use a different boundary value-like 0.01 or $0.10-$ when drawing a conclusion in a significance test.

Making Conclusions

The significance level $\boldsymbol{\alpha}$ is the value that we use as a boundary for deciding whether an observed result is unlikely to happen by chance alone when the null hypothesis is true.

Making Conclusions

The significance level $\boldsymbol{\alpha}$ is the value that we use as a boundary for deciding whether an observed result is unlikely to happen by chance alone when the null hypothesis is true.

If the P-value is less than α, we say that the result is "statistically significant at the $\alpha=.05$ level."

Making Conclusions

The significance level $\boldsymbol{\alpha}$ is the value that we use as a boundary for deciding whether an observed result is unlikely to happen by chance alone when the null hypothesis is true.

If the P-value is less than α, we say that the result is "statistically significant at the $\alpha=$ \qquad level."

CAUTION:

α should be stated before the data are produced.

Check Your Understanding
Calcium is a vital nutrient for healthy bones and teeth. The National Institutes of Health (NIH) recommends a calcium intake of 1300 milligrams (mg) per day for teenagers. The NIH is concerned that teenagers are not getting enough calcium, on average. Is this true?

1. State appropriate hypotheses for performing a significance test. Be sure to define the parameter of interest.

$$
\begin{aligned}
\mu= & \text { true mean daily } \\
& \text { alcium } \\
& \text { intake }
\end{aligned}
$$

Check Your Understanding
Calcium is a vital nutrient for healthy bones and teeth. The National Institutes of Health (NIH) recommends a calcium intake of 1300 milligrams (mg) per day for teenagers. The NIH is concerned that teenagers are not getting enough calcium, on average. Is this true?

1. State appropriate hypotheses for performing a significance test. Be sure to define the parameter of interest.

Researchers decide to perform a test using the hypotheses stated in \#1. They ask a random sample of 20 teens to record their food and drink consumption for 1 day. The researchers then compute the calcium intake for each student. Data analysis reveals that $\overline{\mathrm{x}}=1198 \mathrm{mg}$ and $\mathrm{s}_{\mathrm{x}}=411 \mathrm{mg}$. Researchers performed a significance test and obtained a P-value of 0.1404 .
2. Explain what it would mean for the null hypothesis to be true in this setting. If $H_{0}!\mu=1300$ is true, the mean daily calcium intake is 1300 mg
3. Interpret the P -value.

Assuming the mean daily intake is 1300 ng , there is a 0.1404 probability of a sample mean of 1198 mg or less by chapel (on a sample of 20 tacm)
4. What conclusion would you make at the $a=0.05$ level? Because the p-value $=.140^{4}>a=.05$ we fail to reject H_{0}. We dort have convincing evidence against the null hypothesis.
9. 1 1-9 (odds), 13-15, 19
study pp. 554-560

