Pick up the Warm Up

(2) Write each expression in simpler rad

$$
\begin{aligned}
& 2 \sqrt{x}+3 \sqrt{y}+6 \sqrt{x}+1 \sqrt{y}=8 \sqrt{x}+4 \sqrt{y} \\
& (3 \sqrt{5})^{2}=3^{2} \sqrt{5}^{2}=55 \\
& \frac{\sqrt{72}}{\sqrt{2}}=\sqrt{\frac{72}{2}}=\sqrt{36}=6 \\
& \sqrt{\frac{5}{16}}=\frac{\sqrt{5}}{\sqrt{16}}=\frac{\sqrt{5}}{4}
\end{aligned}
$$

(3) Russell wilson was trying to use the x-intercept method to rewrite the parabola $y=x^{2}=10 x+16$ to graphing
form. Finish what he started.

$$
\begin{aligned}
0= & x^{2}-10 x+16 \\
0= & (x-8)(x-2) \\
& x-8=0 \quad x-2=0 \\
& \underbrace{x=8 \quad x=2}_{x \text {-intercepts }}
\end{aligned}
$$

$$
\begin{gathered}
\text { Vertex } \begin{array}{c}
5-9) \quad y=x^{2} \\
>\{ \\
y=(5)^{2}-10(5)+16 \\
25-50+16 \\
=-9
\end{array}
\end{gathered}
$$

$$
A v g=\frac{8+2}{2}=5
$$

Graphing form is $y=(x-5)^{2}-9$
(4) Use the completing the Square method to check the result in \#3

$$
\begin{aligned}
& y=x^{2}-10 x+16 \\
& y+25=\frac{x^{x-5}}{\frac{x^{2}-5 x}{-5 x \mid 25}}+16 . \\
& \begin{array}{l}
\left(\frac{b}{2}\right)^{2} \quad y=(x-5)^{2}-9 \\
\left(\frac{-10}{2}\right)^{2}=25
\end{array} \\
& \begin{array}{r}
y+25 \\
-25
\end{array}=(x-5)^{2}+16 \\
& y=(x-5)^{2}-9
\end{aligned}
$$

What would it look like without the box?

$$
\begin{aligned}
& y=x^{2}-10 x+16 \\
& y+25=x^{2}-10 x+25+16 \\
& y+25=(x-5)^{2}+16 \\
& -25 \\
& y=(x-5)^{2}-9
\end{aligned}
$$

You have taken 5 LCQ's. Once we get to 6 , a second LCQ will be dropped.

HW Questions . Just pick up the solutions and check \& learn!

72a) exponential equation

$$
\begin{array}{ll}
(2,9) & (4,324) \\
x & x
\end{array}
$$

donble
$\begin{array}{ll}y=a b^{x} & y=a b^{x} \\ a b^{2}=9 & a b^{4}=324\end{array}$

$$
\begin{aligned}
& \frac{a b^{4}}{a b^{2}}=\frac{324}{9} \\
& b^{2}=36
\end{aligned}
$$

$$
y=(b)^{x}
$$

73a $\quad y=2 x^{2}+3 x-5$

x-inter
$y=0$

$$
y=0
$$

Find x and y
intercepts
\square
(b) $y=\sqrt{2 x-4}$
$91 a$

$$
\begin{aligned}
& \sqrt{x}+\sqrt{y}+5 \sqrt{x}+2 \sqrt{y} \\
& \sqrt{x}+5 \sqrt{x}+\sqrt{y}+2 \sqrt{y}
\end{aligned}
$$

b $\quad(2 \sqrt{8})^{2}$

2-74. See graphs at right.
a: stretched parabola, vertex $(0,5)$
b: inverted parabola, vertex $(3,-7)$

2-75. a: $x= \pm 5$
b: $x= \pm \sqrt{11}$
date for the Ch. 2 Test:
Thursday, January 31
last class

GOAL •
Transform any function

TODAY's A lN. 2 New parents

$$
y=x \quad y=x^{2} \quad y=x^{3}
$$

but first......
Let's write down the 5 parent functions from this chapter.

QUICK SKetch of
5 New Parents

$$
\underset{\text { notes }}{\hat{c}}
$$

h

$y=x^{3}$ cubiction $y=\frac{1}{x}$ runciprocal | rection |
| :---: |
| hyperbola |
| function |
| $y=b$ |

$y=x^{3} \quad y=\frac{1}{x}$

With your side Partner discuss the Domain of each (don't need to write down)

Now the range
of each

You are about to make transformations with each function
I. Sketch first
2. Next to each sketch, write the function
[Think first..... GDC later if you need it at all]

Perform each transformation, all on the same large sketch.

1. Translate 4 left, up 6

2. Translate 5 right with negative orientation.
3. Vertical Stretch by 2

4. Down 30, left 800
vertically compressed by $\frac{1}{3}$

$$
\begin{aligned}
& 7 \\
& \text { but you don have } \\
& \text { to sketch } \\
& \qquad y=\frac{1}{3} \sqrt{x+800}-30
\end{aligned}
$$

$$
y=\frac{1}{x}
$$

CAUTION: Shifts of $y=\frac{1}{x}$

1. Translate 4 left, up 6
2. Translate 5 right with negative orientation.
3. Down 500, dow nt 67, vertically stretched by 9

$$
\begin{aligned}
& y=\frac{9}{1}\left(\frac{1}{x-67}\right)-500 \\
& y=\frac{9}{x-67}-500
\end{aligned}
$$

One general way of writing an equation for a parabola is to use graphing form:

$$
y=x^{2} \quad y=a(x-h)^{2}+k
$$

With your group, write the general equation for both of today's functions below your graphs

$$
\begin{array}{ll}
y=\sqrt{x} & y=a \sqrt{x-h}+k \\
y=\frac{1}{x} & y=a x-h+k \\
y=a \frac{1}{k+1}+k
\end{array}
$$

Assignment:

2 -81-82, 84bd, 85, 86ac, 88, 90,92

