

(2) Write each expression in simpler rad

$$2\sqrt{x} + 3\sqrt{y} + 6\sqrt{x} + 1\sqrt{y} = 8\sqrt{x} + 4\sqrt{y}$$

 $(3\sqrt{5})^{2} = 3 \sqrt{5^{2}} = (45)^{2}$
 $9 \cdot 5^{2} = (45)^{2}$
 $\sqrt{72}$
 $\sqrt{75}$
 $\sqrt{75}$
 $\sqrt{75}$
 $\sqrt{75}$
 $\sqrt{16}$
 $\sqrt{16}$

(3) Russell Wilson was trying to use the x-intercept method
to rewrite the parabola
$$y = x^2 + 10x + 16$$
 to grapshing
form. Finish what he started.
$$0 = x^2 + 10x + 16$$

$$0 = (x - 3)(x - 2)$$

$$x - 3 = 0$$

$$x - 2 = 0$$

$$y = (5)^2 - 10(5) + 16$$

(4) Use the completing the Square method to
check the resolt in #3

$$y = x^{2} - 10x + 16$$

 $y + 25 = (x - 5)^{2} + 16$
 $y + 25 = (x - 5)^{2} - 25$
 $y + 25 = (x - 5)^{2} + 16 \cdot (\frac{10}{2})^{2} = 25$
 $y + 25 = (x - 5)^{2} + 16 \cdot (\frac{10}{2})^{2} = 25$
 $y = (x - 5)^{2} - 9$
 $y = (x - 5)^{2} - 9$

What would it look like without the box?

$$y = x^{2} - 10x + 16$$

$$(10x^{2} - 25)$$

$$(10x^{2$$

HW Questions . Just pick up the solutions and check & learn !

72a) exponential equation

$$(2, 9)$$
 $(4, 324)$ bubb
 $y = ab^{x}$
 $y = ab^{x}$
 $ab^{2} = 9$ $ab^{y} = 324$
 $ab^{4} = 324$
 $ab^{2} = 9$
 $bb^{2} = 324$
 $bb^{2} = 324$

$$\begin{array}{cccc}
\hline 73a & y = 2x^2 + 3x - 5 & \text{Find } x \text{ and } y \\
\hline x + inter & 2x^2 + 3x - 5 = 0 \\
\hline y = 0 & \square \times
\end{array}$$

$$y = \sqrt{2x - 4}$$

Ь	$\left(2\sqrt{8}\right)^{2}$		

GOAL.
Transform any function
TODAY'S AIN
$$\therefore 2$$
 New parents
 $y=x \ y=x^2 \ y=x^3$

Now the range of each

You are about to make transformations with each function

I. Sketch first

2. Next to each sketch, write the function

[Think first..... GDC later if you need it at all]

Perform each transformation, all on the same large sketch.

- 1. Translate 4 left, up 6
- **2. Translate 5 right with negative orientation.**
- 3. Vertical Stretch by 2

4. DOWN 30, left 800
Vertically compressed by
$$\frac{1}{3}$$

but you don't have
to sketch
 $y = \frac{1}{3}\sqrt{x+800} - 30$

One *general* way of writing an equation for a **parabola** is to use graphing form:

$$y = x^2$$
 $y = a (x-h)^2 + K$

With your group, write the <u>general</u> equation for both of today's functions below your graphs

$$y = ix \qquad y = \alpha \sqrt{x-h} + k$$

$$y = ix + k \qquad y = \alpha \frac{1}{x-h} + k$$

