Pick up the Warm Up Please only do the front side,

- also pick up the Notes on Quadratic Functions

You can tape them in your notes if you choose. (not required)

Using FACTOring + Z 8 P?

$$
2 n^{2}-11 n+14=0
$$

$(2 n-7)(n-2)=0$

Using FACTơing + Z $8_{0} P$.

$$
\begin{aligned}
& 2 n^{2}-11 n+14=0 \\
& (2 n-7)(n-2)=0 \\
& a \cdot b=0 \\
& 2 n-7=0 \quad n-2=0 \\
& 2 n=7 \quad n=2 \\
& n=\frac{7}{2} \\
& n=3.5 \\
& \begin{array}{ll}
-1 n & -28 n \\
-2 n & -14 n \\
-4 n & -7 n \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q.F. } 2 n^{2}-11 n+14=0 \quad \begin{array}{l}
a=2 \quad b=-11 \\
c=14
\end{array} \\
& X=\frac{-(-11) \pm \sqrt{\left.(11)^{2}-42\right)(14)}}{2(2)} \\
& X=\frac{11 \pm \sqrt{9}}{4}=\frac{11 \pm 3}{4}=\left\{\begin{array}{l}
\frac{11+3}{4}=\frac{14}{4}=\left(\frac{7}{2}\right) \\
\rightarrow \frac{11-3}{4}=\frac{8}{4}=(2) \\
X=\frac{11 \pm 3}{4}
\end{array}\right.
\end{aligned}
$$

Similarly, there are three forms of a single-variable quadratic equation.
Standard form: Any quadratic equation written in the form $a x^{2}+b x+c=0$.
Factored form: Any quadratic equation written in the form $a(x+b)(x+c)=0$.
Perfect Square form: Any quadratic equation written in the form $(a x-b)^{2}=c^{2}$.

Solutions to a quadratic equation can be written in exact form (radical form) as in

$$
x=\frac{-3+\sqrt{5}}{2} \text { or } x=\frac{-3-\sqrt{5}}{2}
$$

Solutions can also be estimated and written in approximate decimal form:

$$
x=-0.38 \text { or } x=-2.62
$$

$$
\begin{aligned}
& \text { Q.F. } 2 n^{2}-11 n+14=0 \quad a=2 \quad b=-11 \\
& X=\frac{-(-11) \pm \sqrt{(-11)^{2}-4(2)(14)}}{2(2)} \\
& X=\frac{11 \pm \sqrt{9}}{4} \rightarrow X=\frac{11+3}{4}=\frac{14}{4}=3.5 \\
& X=\frac{11 \pm 3}{4} \quad X=\frac{11-3}{4}=\frac{8}{4}=2
\end{aligned}
$$

Questions
on
HW?
$35 a \quad y^{2}-6 y=0$
Solve
without using
${ }_{0} F_{0}$
$35 b y^{2}-6 y=0 \quad b \quad n^{2}+5 n+7=7$
$35<$
[35d]

$$
2 t^{2}-14 t+3=3 \quad \frac{1}{3} x^{2}+3 x-4=-4
$$

$$
y=0.8(x+2)^{2}+5
$$

$$
\begin{aligned}
& \text { 40< }\left(2 x^{2} \cdot y^{-3}\right)\left(3 x^{-1} \cdot y^{5}\right) \\
& 2 \cdot x^{2} \cdot y^{-3} \cdot 3 \cdot x^{-1} \cdot y^{5} \\
& 6 \cdot x^{2} \cdot x^{-1} \cdot y^{-3} \cdot y^{5}=6 x^{1} y^{2} \\
& =6 x y^{2}
\end{aligned}
$$

36 a?

$$
\begin{aligned}
& 36 c 0=1 x^{2}-14 x+40 \\
& 0=(x-4)(x-10) \\
& x-4=0 \quad x-10=0 \\
& x=4 \quad x=10 \\
& \text { avg }=\frac{4+10}{2}=7 \\
& (7,-9) \\
& \begin{array}{l|l}
\downarrow(7) \\
f(7) & \\
\hline
\end{array} \\
& \text { Graphing } \\
& \text { Form } \\
& y=(x-7)^{2}+9
\end{aligned}
$$

39 Make predictions about how many places each will touch the $x-a \times 1$.
(a) $y=(x-2)(x-3)$
(b) $y=(x+1)^{2}$
(c) $y=x^{2}+6 x+9$
(d) $y=x^{2}+7 x+10$
(e) $y=x^{2}+6 x+8$
(f) $y=-x^{2}-4 x-4$

STAPLE AND TURN IN AW PACKET

$$
8 \text { assignments } \rightarrow \overline{80}
$$

standard form

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& \substack{\uparrow \\
y-\text {-intercept } \\
(0, c)}
\end{aligned}
$$

graphing form

- $y=a(x-h)^{2}+k$
where (h, k) is the vertex

$$
y=\frac{\text { example }}{3 x^{2}+2 x-5}
$$

$$
y=1(x+4)^{2}-6
$$

factored form

$$
y=a(x+b)(x+c) \quad \text { where } \quad(-b, 0)
$$ $(-b, 0)$ and $(-c, 0)$ are the x-intercepts

$$
y=2(x-3)(x+7)
$$

Each function form has its equation equivalent.

$$
\begin{gathered}
3 x^{2}+2 x-6=0 \\
\frac{1}{2}(x-7)(x+2)=0 \\
(2 x-3)^{2}=16
\end{gathered}
$$

Graphing is fast if the equation is in Graphing form.

But what if its not.

$$
y=x^{2}-7 x+9
$$

Now
take
notes

Section 2.1.4

How can we convert?

$$
y=x^{2}-4 x+11
$$

standard

$$
y=(x-2)^{2}+7
$$ form graphing form

Two Methods (1) Completing the square (2) Angering the x-intercepts

Completing the Square

 to convert from Standard to Graphing Form$$
\begin{gathered}
y=x^{2}-4 x+11 \\
y=(x-2)(x-2)+7 \\
\quad \searrow \\
y=(x-2)^{2}+7
\end{gathered}
$$

The technique:

$$
\begin{aligned}
& y=x^{2}+6 x-5 \\
& y+9=\begin{array}{|l|l|}
\hline x^{2} & 3 x \\
\hline 3 & 3 x \\
\hline
\end{array} \\
& \text { Vertex } \\
& y=x^{2} \\
& \text { Vertex }(-3,-14) \\
& y \text {-intercept }(0,-5)
\end{aligned}
$$

$$
\begin{aligned}
& \text { The technique: } \\
& y=x^{2}+6 x-5 \\
& y=\begin{array}{|l|l|l|}
x & x^{2} & 3 x \\
\hline & 3 x & 9 a \\
\hline & 9-9 \\
\hline
\end{array} \\
& \text { Since } 3 x \cdot 3 x=9 x^{2} \\
& y=(x+3)(x+3)-14
\end{aligned}
$$

Convert, find vertex, then sketch $f(x)$

$$
\begin{aligned}
& f(x)=x^{2}-4 x+9 \\
& f(x)+4=x+\frac{x^{2}-2 x}{x^{2}-2 x \mid}+9 \\
& -2 \mid-9 \\
& f(x)+4=(x-2)^{2}+9 \\
& -4 \\
& f(x)=(x-2)^{2}+5
\end{aligned}
$$

$$
f(x)=(x-2)^{2}+5
$$

y-intercept axis of symmetry?

Just Watch method 2

Convert standard form to graphing form (using x-intercepts)

How can we find the middle?

$$
y=x^{2}-8 x+7
$$

vertex (,) graphing form is 8

standard form can't always be trusted to find x-intercepts.

$$
y=x^{2}+8 x+18
$$

Why ?

now go to the Classwork on the back of the Warm Up

Convert $y=x^{2}-2 x-15$ to
Graphing Form using both methods.

$$
\begin{aligned}
& y=x^{2}-2 x-15 \\
& \text { completing the square }
\end{aligned}
$$

$$
\begin{aligned}
& Y=X^{2}=2 X=15 \\
& \begin{array}{l}
\text { method of } x \text {-intercepts } \\
\text { Vertical stretch factor } \\
\text { find x-intercepts } \\
0=x^{2}-2 x-15 \\
0=(x+3)(x-5) \\
x=-3 \quad x=5 \\
\text { average the x-intercepts the y-coordinate of the vertex. } \\
-3+5 \\
-2
\end{array}
\end{aligned}
$$

now sketch the graph including both intercepts

$$
y=(x-1)^{2}-16
$$

Use your graphing calculator to verify that they are equivalent

$$
\begin{aligned}
& y_{1}=x^{2}-2 x-15 \\
& y_{2}=(x-1)^{2}-16
\end{aligned}
$$

\square

$$
f(x)=x^{2}+8 x+10
$$

Assignment

2-..... 50ac, 52, 53a, 54, 55bc, 56a

