Tomorrow there will be a Quiz on Sequences \& Exponential Functions

Later you will see your LCQ from last week.

1 Last week we learned to create an exponential function in the form $\mathrm{y}=\mathrm{ab} \mathrm{b}^{\mathrm{x}}$
using the "Double Substitution Method". Use it now to find the exponential function that passes through the two points $(2,12)$ and $(5,187.5)$

$$
\begin{aligned}
& 1875=\frac{12}{b^{3}} b^{8} b^{3} \\
& 187.5=12 \cdot b^{3}
\end{aligned}
$$

$$
b^{3}=\frac{187.5}{9}
$$

$$
a=\frac{12}{b^{2}}
$$

$$
\sqrt[3]{\sqrt[2]{6}}
$$

$$
\begin{aligned}
& b=2.5 \\
& a=\frac{12}{(2.5)^{2}}=1.92
\end{aligned}
$$

$$
b^{3}=\frac{187.5}{12}
$$

(2) Find the future value of an 8 year investment of $\$ 4500$ that pays an annual interest of 4.29%, compounded once once a year.

$$
\begin{gathered}
100^{\circ o}+4.0 \text { grow } \\
104.0 \text { x } \\
b=1.0^{4}
\end{gathered}
$$

$$
\begin{aligned}
y & =4500(1.04)^{8} \\
& \approx 56158 ., 0
\end{aligned}
$$

Compound Interest Formula:

Future Value $=\operatorname{PV}\left(1+\frac{r}{k}\right)^{k t}$
where
$P V=$ Present Value
$r=$ annual interest (as a decimal)
$t=$ number of years $\$$ is being invested
$k=\#$ times per year interest is compounded
(3) Find the future value of an 8 year investment of $\$ 4500$ that pays an annual interest of 4.2%, compounded once TWICE a year.
$r=.04$

$$
V=4500\left(1+\frac{.04}{2}\right)^{208}
$$

$$
\text { Future Value }=P V\left(1+\frac{r}{k}\right)^{k t}
$$

(5)

$$
40 x^{2}+80 x-50
$$

remember that all common factors have to pulled out first in order to use the box method.

$$
\begin{aligned}
& 10(\\
& 10\left(4 x^{2}+8 x-5\right) \\
& 10()(7)
\end{aligned}
$$

(6) Solve

$$
\begin{aligned}
& (16)^{n}=4^{5 n+1} \\
& \left(4^{2}\right)^{n}=4^{5 n+4} \\
& 4^{2 n}=4^{5 n+4} \\
& 2 n=5_{-2 n}^{2 n+1} \quad n=-\frac{1}{3} \\
& -2 n=3 n+1 \\
& -1
\end{aligned}
$$

$$
\left(b^{2}\right)^{3}
$$

a)

$$
\begin{aligned}
& 2 x+y=-7 y \\
& y=x+10
\end{aligned} \quad \text { Substitution! }
$$

$$
\begin{aligned}
& y=(x+10) \\
& 2 x+(x+10)=-7(x+10) \\
& \begin{array}{l}
3 x+10=-7 x-70 \\
+7 x
\end{array} \\
& 10 x+10=-70 \\
& 10 x=-80
\end{aligned}
$$

b)
$B-73$ a) $3 \cdot x^{2} \cdot \frac{1}{x^{-1}} \cdot y^{-3} \cdot \frac{1}{y^{2}}$

b) $\frac{m^{2} p^{1} q^{-1}}{4 m^{-2} p_{1} q^{3}}$
\downarrow

(2, Exponential functions
$B-94$
a) $(1,7.5)(3,16.875)$
$y=a b^{x} \quad y=a b^{x}$

$$
\begin{aligned}
& 16.875=\frac{7.5}{1} \cdot b^{3} \\
& 16.875=7.5 b^{2} \\
& b^{2}=\frac{16.875}{7.5} \\
& r \\
& b=1.5 \rightarrow a=\frac{7.5}{1.5} \\
& =s
\end{aligned}
$$

(b) $(-1,1.25)(3,0.032)$

$$
\begin{array}{ll}
y=a b^{x} & y=a b^{x} \\
1.25=a b^{-1} & 0.032=a b^{3}
\end{array}
$$

$\operatorname{ling}_{\text {ing }} \mathrm{m}^{0}$. Divide $2^{\text {nd }}$ equation by the first
ne f

$$
\begin{aligned}
& \frac{.032}{1.25}=\frac{a b^{3}}{a b^{-1}} \\
& .0256=b^{3} \cdot b^{\prime} \\
& b^{4}=.0256 \\
& \sqrt[4]{4} \\
& b=0.4 \quad\left\{y=0.5(0.4)^{x}\right\}
\end{aligned}
$$

$$
2-6 \text { A negative coefficient } \infty \cdots \cdots
$$

$$
\begin{aligned}
& y=x^{2} \\
& y=-3 x^{2} \\
& y=-0.25 x^{2}
\end{aligned}
$$

a.

c.

b.

d.

Aim How can I translate (shift) a parabola?

Open your Textbook to page 60

$$
2-11
$$

We'll be making quality sketches rather than graphs

Notes
$2-11$ core problem
\checkmark Ill be circulating to answer questions

- I will assume you will have discussed $w /$ each other first.
- No repeats-

(b)

$$
\begin{aligned}
& Y_{1}=K \text { experiment in } Y_{1} \\
& Y_{2}=(x-2)(x-2)
\end{aligned}
$$

(b)

$y=-2(x+4)^{2}$
$-2(-x-4)^{2}$
$(-4,0)$
$(-x-4)(x-4)(-x-4)$

Why does $y=(x-2)(x-2)$ only touch the x-ax's at $x=2$?

Sharing of equations you have developed.
parabolas that touch the x-axis only at $x=2$ (and open downward)

How do you
Transform $y=3 x^{2}$ by translating at 5 units to the left

$$
(3 x-2)^{2}
$$

$$
y=3(x+5)^{2}
$$

$$
\text { or } y=3(x+5)(x+5)
$$

The last assignment we will add to the yellow cover sheet will be this Wednesday's assignment. You will turn it in on Thursday.

Assignment

$$
2-\ldots 16,17,18 a b, 19-20,21 c
$$

