Please pull out your class

 notes from yesterday AP星 Exam（ip he Preschool Problem）The formula for the two－sample z statistic for a test about $p_{1}-p_{2}$ often leads to calculation errors by students．

As a result，your teacher may recommend using the calculator＇s 2－ PropZTest feature to perform calculations on the AP ${ }^{\circledR}$ Statistics exam． （IDo！）

Be sure to name the procedure（two－sample z test for $p_{1}-p_{2}$ ）in the ＂Plan＂step and report the standardized test statistic（ $\mathbf{z}=\mathbf{- 2 . 3 2}$ ）and P － value（0．98）in the＂Do＂step．

Example of A Significance Test for $p_{1}-p_{2}$

Preschool－To study the long－term effects of preschool programs for poor children，researchers designed an experiment．They recruited 123 children who had never attended preschool from low－income families in Michigan． Researchers randomly assigned 62 of the children to attend preschool（paid for by the study budget）and the other 61 to serve as a control group who would not go to preschool．One response variable of interest was the need for social services as adults．Over a 10－year period， 38 children in the preschool group and 49 in the control group have needed social services．

1．Do these data provide convincing evidence that preschool reduces the later need for social services for children like the ones in this study？Justify your answer．

$$
\begin{aligned}
& 62 \text { attended preschool (38 used Social) services) } \\
& \text { as adults } \\
& \text { no preschool (49 used Social serves) }
\end{aligned}
$$

$$
61 \text { no preschool }
$$

2-PropZTest.
2-PropZTest.
$\times 1: 38$
$\times 1: 38$
n1:62
n1:62
x2:49
x2:49
ni: 1
ni: 1
Calculate Draw
Calculate Draw

This disadvantage of doing this on every problem on every Significance Test for a difference of proportions (including HW) is that you might not develop/ practice some of the details for multiple choice questions.

The same formulas will apply in Ch. 12.

EXPERIMENTAL DESIGN 8

Which of the following is most useful in establishing cause-and-effect relationships?
(A) A complete census
(B) A least squares regression line showing high correlation
(C) A simple random sample (SRS)
(D) A well-designed, well-conducted survey incorporating chance to ensure a representative sample
(E) A controlled experiment

Regression lines show association, not causation, Surveys suggest relationships, which controlled experiments can help show to be cause and effect.

Answer: E

EXPERIMENTAL DESIGN 12

Sampling error occurs
(A) when interviewers make mistakes resulting in bias.
(B) when interviewers use judgrnent instead of random choice in picking the sample.
(C) when samples are too small.
(D) because a sample statistic is used to estimate a population parameter.
(E) in all of the above cases.

Different samples give different statistics, all of which are estimates for the same population parameter, and so error, called sampling error, is naturally present.

Answer: D

which is hardest?
\checkmark DESCRIBE the shape, center, and variability of the sampling distribution of $\bar{x}_{1}-\bar{x}_{2}$.
\checkmark DETERMINE whether the conditions are met for doing inference about a difference between two means.
\checkmark CONSTRUCT and INTERPRET a confidence interval for a difference between two means.

\square
Suppose we take independent SRS's of 12 girls and 8 boys and measure their heights

	Sampling distribution of \bar{x}_{G}	Sampling distribution of \bar{x}_{B}
Shape	Approximately Normal, because the population distribution is approximately Normal Center	$\mu_{\bar{x}_{G}}=\mu_{G}=56.4$ inches distribution is approximately Normal
variability	$\sigma_{\bar{\chi}_{G}}=\frac{\sigma_{G}}{\sqrt{n_{G}}}=\frac{2.7}{\sqrt{12}}=0.78$ inch because $12<10 \%$ of all 10-year-old girls in the United States.	$\mu_{\bar{x}_{B}}=\mu_{B}=55.7$ inches $\sigma_{\bar{x}_{B}}=\frac{\sigma_{B}}{\sqrt{n_{B}}}=\frac{3.8}{\sqrt{8}}=1.34$ inches because $8<10 \%$ of all 10-year-ol in the United States.

but, what can we say
about the difference in

$$
\text { Sample means } \bar{X}_{G}-X_{B}
$$

What can we say about the difference $\bar{x}_{G}-\bar{x}_{B}$ in the sample means?

Simulated sampling distribution of the difference in sample means $\bar{x}_{G}-\bar{x}_{B}$.

Ch. 7 Sampling Distributions
 个 \uparrow

What can we say about the difference $\bar{x}_{G}-\bar{x}_{B}$ in the sample means?

Simulated sampling distribution of the difference in sample means $\bar{x}_{G}-\bar{x}_{B}$.

The Sampling Distribution of $\bar{x}_{1}-x_{2}$

- The sampling distribution of $\bar{x}_{1}-\bar{x}_{2}$ is Normal if both population distributions are Normal. It is approximately Normal if both sample sizes are large ($n_{1} \geq 30$ and $n_{2} \geq 30$)
 or if one population is Normally distributed and the other sample size is large.

The Sampling Distribution of $\bar{x}_{1}-\bar{x}_{2}$

- The sampling distribution of $\bar{x}_{1}-\bar{x}_{2}$ is Normal if both population distributions are Normal. It is approximately Normal if both sample sizes are large ($n_{1} \geq 30$ and $n_{2} \geq 30$) or if one population is Normally distributed and the other sample size is large.
- The mean of the sampling distribution of $\bar{x}_{1}-\bar{x}_{2}$ is

$$
\mu_{\bar{x}_{1}-\bar{x}_{2}}=\mu_{1}-\mu_{2}
$$

The Sampling Distribution of $\bar{x}_{1}-\bar{x}_{2}$

- The sampling distribution of $\bar{x}_{1}-\bar{x}_{2}$ is Normal if both population distributions are Normal. It is approximately Normal if both sample sizes are large ($n_{1} \geq 30$ and $n_{2} \geq 30$) or if one population is Normally distributed and the other sample size is large.
- The mean of the sampling distribution of $\bar{x}_{1}-\bar{x}_{2}$ is

$$
\mu_{\bar{x}_{1}-\bar{x}_{2}}=\mu_{1}-\mu_{2}
$$

- The standard deviation of the sampling distribution of $\bar{x}_{1}-\bar{x}_{2}$ is

$$
\sigma_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
$$

as long as the 10% condition is met for both samples: $n_{1}<0.10 N_{1}$ and $n_{2}<0.10 N_{2}$.

$$
\begin{aligned}
& \text { So. } \\
& \text { When creating C.I:'s } \\
& \text { for } \mu_{1}-\mu_{2}
\end{aligned}
$$

\rightarrow Conditions for Constructing a Confidence Interval入 About a Difference in Means

Random: The data come from two independent random samples or from two groups in a randomized experiment.
10% : When sampling without replacement, $n_{1}<0.10 N_{1}$ and $n_{2}<0.10 N_{2}$.
Large Counts: Normal/Large Sample: For each sample, the corresponding population distribution (or the true distribution of response to the treatment) is Normal or the sample size is large ($n \geq 30$). For each sample, if the population (treatment) distribution has unknown shape and $n<30$, a graph of the sample data shows no strong skewness or outliers.

Two Sample t Interval for $\mu_{1}-\mu_{2}$

Assuming the conditions have been met

```
Importantideas:istic }\pm\mathrm{ Statistriticalvalue)(Std. Dev of Statisti)
```

Two Sample t Interval for $\mu_{1}-\mu_{2}$
Assuming the conditions have been met
statistic \pm (critical value) • (standard deviation of statistic)

$$
\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm \text { (critical value) } \cdot(\text { standard deviation of statistic })
$$

$$
\sigma_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
$$

$$
S E_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{\overline{s_{2}^{2}}}{n_{2}}} \leftarrow \begin{aligned}
& \begin{array}{l}
\text { We use } s_{1} \text { and } s_{2} \text { to } \\
\text { estimate } \sigma_{1} \text { and } \sigma_{2} . \text { We call } \\
\text { this the standard error of } \\
\bar{x}_{1}-\bar{x}_{2} .
\end{array}
\end{aligned}
$$

Two Sample \boldsymbol{t} Interval for $\mu_{1}-\mu_{2}$
Assuming the conditions have been met
Important ideas:
Statistic \pm (criticalvalue)(Std. Dev of Statistic)

$$
\left(\bar{x}_{1}-\bar{x}_{2}\right)
$$

$$
\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm(\text { critical value })\left(\operatorname{L}_{\bar{x}_{1}}-\bar{x}_{2}\right.
$$

$$
\left(x_{1}-\bar{x}_{2}\right) \pm \neq * \sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}
$$

where t^{*} is the critical value with $C \%$ of the area between $-t^{*}$ and t^{*} for the t distribution with degrees of freedom using either

- Option 1 (technology) or
- Option 2 (the smaller of $n_{1}-1$ and $n_{2}-1$) smaller of would yield larger which is more conservative

Important ideas:

$$
\begin{aligned}
& \text { tantideas: } \\
& \text { Statistic } \pm \text { (criticalvalue)(Std. Dev of Statistic) } \\
& \left(\overline{X_{1}}-\bar{x}_{2}\right) \\
& \left(\overline{X_{1}}-\overline{X_{2}}\right) \pm \text { (critical value) }\left(S \bar{E} \bar{x}_{2}-\bar{x}_{1}\right) \\
& \left(\overline{X_{1}}-\overline{X_{2}}\right) \pm \sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{1}^{2}}{n_{2}}}
\end{aligned}
$$

where t^{*} is the critical value with $C \%$ of the area between $-t^{*}$ and t^{*} for the t distribution with degrees of freedom using either

- Option 1 (technology) or
- Option 2 (the smaller of $n_{1}-1$ and $n_{2}-1$)
smaller ff would yield larger which is more conservative
(III) Inferential Statistics

Standardized test statistic: $\frac{\text { statistic - parameter }}{\text { standard deviation of statistic }}$
Confidence interval: statistic \pm (critical value) $\cdot($ standard deviation of statistic)
Single-Sample

Statistic	Standard Deviation of Statistic
Sample Mean	$\frac{\sigma}{\sqrt{n}}$
Sample Proportion	$\sqrt{\frac{p(1-p)}{n}}$

Two-Sample

Which cookie has the most chips?

 VS
 Treasure Chips

Abstract

Is there a difference in the number of chocolate chips in Chips Ahoy cookies versus the number of chocolate chips in Treasure Chips cookies? Each pair of students will count the number of chocolate chips in 1 Chips Ahoy cookie and 1 Treasure Chips cookie. Due to the factories processes, we can assume the population distributions of \# of chips are approximately normal and that the samples are random.

1. Record the number of chocolate chips in each cookie. Write them on the board.
```
# in Chips Ahoy =
```

\qquad

``` \# in Treasure Chips =
``` \(\qquad\)


\section*{Treasure Chips}

2. Find the class totals find the mean number of chocolate chips for each type of cookie, the standard deviation and the difference.
\[
\begin{array}{rr}
\text { Chips Ahoy: } \bar{x}_{1}=191 & \text { Treasure Chips: } \bar{x}_{2} \\
s_{1}=2.8 B & s_{2}=4.6 \\
n=16 &
\end{array}
\]
\[
\text { Difference: } \bar{x}_{1}-\bar{x}_{2}=19.1-233
\]
\[
=-4.2
\]
3. If we repeated this process many times and created a dotplot, we would have the sampling distribution of \(\bar{x}_{1}-\bar{x}_{2}\). Describe the shape, center and variabity of the sampling distribution.
Shape: Approx Nor ma

Center:
 Approx. Normal

Variability:

4. With at least one other person in the class, discuss and confirm that the conditions for constructing a confidence interval been met? (don't have to write details)
5. Construct a \(95 \%\) confidence interval for the true difference in the mean number of chocolate chips in Chips Ahoy and Treasure Chips. (you don't need to write the general or specific formulas in this particular unless you want) but do show the "work".
\[
\begin{aligned}
& \bar{x}_{1}-\bar{x}_{2} \pm t^{*} \sqrt{\frac{5^{2}}{n}+\frac{s_{2}}{12}} \\
& (911-23.3) \pm 1.753 \sqrt{\frac{0.3^{2}}{16}+\frac{v^{2}}{16}} \\
& -42 \pm 2.26 \\
& =(-646,-1.94)
\end{aligned}
\]
\[
\begin{aligned}
& \text { degrees of freedom } \\
& \text { It's complicated }
\end{aligned}
\]

Option 1 (technology): Just let technology compute the df. This will most likely not be a whole number.

Option 2 (conservative): smaller of \(n_{1}-1\) and \(n_{2}-2\)
\[
\begin{align*}
& \text { degrees of freedom } \\
& \text { Ir complicated }
\end{align*}
\]

Option 1 (technology): Just let technology compute the dj. This will most likely not be a whole number.

Option 2 (conservative): smaller of \(n_{1}-1\) and \(n_{2}-2\)
where \(t^{*}\) is the critical value with \(C \%\) of the area between \(-t^{*}\) and \(t^{*}\) for the \(t\) distribution with degrees of freedom using either
- Option 1 (let technology calculate the degrees of freedom) or
- Option 2 (the smaller of \(n_{1}-1\) and \(n_{2}-1\))
smaller ff would yield larger which is more conservative
\(n_{1}=\quad n_{2}=\)
\(d f=n-1\)

4. With at least one other person in the class, discuss and confirm that the conditions for constructing a confidence interval been met? (don't have to write details)
5. Construct a \(95 \%\) confidence interval for the true difference in the mean number of chocolate chips in Chips Ahoy and Treasure Chips. (you don't need to write the general or specific formulas in this particular unless you want) but do show the "work".

What if we swithed the ? order of subtraction \({ }^{\text {to }}\left(P_{2}-P_{R}\right)\)
example: \(\left(\begin{array}{cc}\hat{p}_{1} & \hat{p}_{2} \\ (34050 & -23.70)\end{array} \frac{\hat{p}_{2}}{} \frac{\hat{p}_{1}}{(23.70-34.53)}\right.\)
10.83 becomes - 10.83

In answers in the back of your textbook:
It's OK if the endpoints of the endpoints of the interval in your answer to have opposite signs
Ether subtraction order is correct as long as you clearly identify the order you are using.
4. With at least one other person in the class, discuss and confirm that the conditions for constructing a confidence interval been met? (don't have to write details)
5. Construct a \(95 \%\) confidence interval for the true difference in the mean number of chocolate chips in Chips Ahoy and Treasure Chips. (you don't need to write the general or specific formulas in this particular unless you want) but do show the "work".

If using Technology for the "DO" step, you must:
have already named the procedure in the in the "Plan" step
-Give the interval (3.9632, 17.724) for example
-and report the degrees of freedom.
\[
\begin{gathered}
\text { It's a cinch } \\
\mathrm{df}=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1}-1}\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}+\frac{1}{n_{2}-1}\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}} \\
\text { Just kidding }
\end{gathered}
\]

4. With at least one other person in the class, discuss and confirm that the conditions for constructing a confidence interval been met? (don't have to write details)
5. Construct a \(95 \%\) confidence interval for the true difference in the mean number of chocolate chips in Chips Ahoy and Treasure Chips. (you don't need to write the general or specific formulas in this particular unless you want) but do show the "work".

\(n_{1}=\)
\[
\text { with } d f=28.6
\]
with \(d f=\) 2 28

Should I Tech or Table
\[
\begin{aligned}
& \uparrow \uparrow \uparrow \\
& \text { recommended } \\
& \text { ONFR }
\end{aligned}
\]

The two methods will not produce the same answer If you write oui the formula with numbers substituted in
a) leave \(t^{*}\) in the formula instead of using conservative value.
b) Then use 2 , Tamp \(T\) int and report the calculator's interval and \(d f\).
6. Do we have evidence that there is a difference in the average number of chocolate chips in a Chips Ahoy and a Treasure cookie?
\((-,-) \rightarrow\) Treasure C has more
\((+,+) \rightarrow\) Chips Ahoy has more
\((-,+) \rightarrow\) No difference

What's expected on the AP exam
for CI means

\section*{State}
- Defind both parameters
- State Confidence level

\section*{Plan Plan}
- Identify the procedure
- State and check conditions

\section*{Do}

Calculate the Confidence Interval
1. State sample \(\bar{x}\) 's and \(s_{x}{ }^{\prime} s\)
2. Caluculate the interval with option 1 or 2 (but not both)

Option 1 - include for example: 2 - SampTInt gives \((3.9632,17.724)\)
Option 2 - include for example: \(d f=15 \quad t^{*}=1.26\) and
\(\ \downarrow\)
\[
C I=(43.24-38.26) \pm 1.26 \sqrt{\frac{14.26^{2}}{30}+\frac{17.50^{2}}{34}}=\ldots \ldots
\]

Qt's not a must to show the general \& specific formula but the longer you continue the be ter you will know it for \(M / C\) (and \(C h .12\)) \(\gamma \uparrow\)

\section*{Conclude}
- Report Confidence level
- Report computed interval
- Give interpretation in context

\section*{Now Put it all together}

Pulse Rates

\section*{Pulse Rates:}

Mr. Cedarlund's class performed an experiment to investigate whether drinking a caffeinated beverage would increase pulse rates. Twenty students in the class volunteered to take part in the experiment. All of the students measured their initial pulse rates (in beats per minute). Then Mr. Wilcox randomly assigned the students into two groups of 10. Each student in the first group drank 12 ounces of cola with caffeine. Each student in the second group drank 12 ounces of caffeine-free cola. All students then measured their pulse rates again. The table displays the change in pulse rate for the students in both groups.
\begin{tabular}{lrrrrrrrrrrrc}
\hline & \multicolumn{9}{c}{\begin{tabular}{c}
Change in pulse rate \\
(Final pulse rate - Initial pulse rate)
\end{tabular}} & & \begin{tabular}{c}
Mean \\
change
\end{tabular} \\
\hline Caffeine & 8 & 3 & 5 & 1 & 4 & 0 & 6 & 1 & 4 & 0 & 3.2 \\
No caffeine & 3 & -2 & 4 & -1 & 5 & 5 & 1 & 2 & -1 & 4 & 2.0 \\
\hline
\end{tabular}

Construct and interpret a \(95 \%\) confidence interval for the difference in true mean change in pulse rate for subjects like these who drink caffeine versus who drink no caffeine.

\section*{Pulse Rates:}

Mr. Cedarlund's class performed an experiment to investigate whether drinking a caffeinated beverage would increase pulse rates. Twenty students in the class volunteered to take part in the experiment. All of the students measured their initial pulse rates (in beats per minute). Then Mr. Cedarlund randomly assigned the students into two groups of 10 . Each student in the first group drank 12 ounces of cola with caffeine. Each student in the second group drank 12 ounces of caffeine-free cola. All students then measured their pulse rates again. The table displays the change in pulse rate for the students in both groups.

Construct and interpret a \(95 \%\) confidence interval for the difference in true mean change in pulse rate for subjects like these who drink caffeine versus who drink no caffeine.

PLAN TWO-Sample \(t\) interval for \(\mu_{1}-\mu_{2}\)
\(\checkmark\) Random
Randomly assigned to groups
\(\checkmark\) Large Counts:

No strong kkew/No outliers

DO
\[
\begin{array}{ll}
\bar{x}_{1}=3.2 & \bar{x}_{2}=2 \\
s_{1}=2.70 & s_{2}=2.62 \\
n=10 & n=10
\end{array}
\]

2 - Camp Tint gives \((-1.302,3.702)\) \(u\) using \(d f=17.986\)

Option 2
\[
\begin{aligned}
& d f=9 \quad t^{*}=2.262 \\
& (3.2-2) \pm 2.262 \sqrt{\frac{2.70^{2}}{10}+\frac{2.62^{2}}{10}} \\
& 1.2 \pm 2.691 \\
& (-1.491,3.891)
\end{aligned}
\]

CONCLUDE We are \(95^{\circ}\) confident that the interval from -1.302 to 3.702 beats par minute captures \(\mu_{1}-\mu_{2}\), the difference in the true mean change in pulse rate for for all students like these after drinking 12 oz of cola with caffeine versus who caffeine.
10.2.....37, 39, 41, 45, 49
study pp. 645-654```

