

[^0]we assign subjects to treatments at Answer: (A) in a randomized block design, locks. In effect, to reduce variability random within each of the homogeneous
we run parallel experiments on the blocks.

Think about the conditions that need to be met in order to create confidence intervals for proportions. Match the condition on the left with its purpose on the right.

So we can generalize to both populations or, in an experiment, we can show causation.

So sampling without replacement is OK. If the condition is met, we can use the formulas for the standard devtation.

So that the sampling distribution of $\hat{p}_{1}-\hat{p}_{2}$ will So that the sampling distribution of $\hat{p}_{1}-\hat{p}_{2}$ will
be approximately Normal and we can uthen use z^{*} to do calculations

On the AP Statistics exam there will be 6 free response questions, the last of which will be an investigative task. \qquad
where you will need to think about a new concept that you did not cover in the AP Stats course.

It is always something that can be done using good statistical thinking and reasoning.

The activity we are about to do will take what you already know about significance tests and apply it in a new context.

You will be asked to do a full (four step) significance test for a difference of proportions..... before I show you the ins and outs.

Please do not refer to your textbook.
You can, however, use your AP formula sheet (first option) and each other. Use your previous notes (as a last option)

Are some groups underrepresented? 10.1 Day 3

According to phys org, Black and Hispanic females are underrepresented in STEM programs compared to non-STEM programs. A certain university would like to see if this is true for their student population. They took a random sample of 300 STEM students and found that 12 were Black or Hispanic
seoarate random samole of 500 non-STEM students had 75 Black or Hisoanic females.
Do the data provide convincing evidence that Black and Hispanic females are underrepresented in STEM programs? Use a 5% significance level.

STATE: Parameter:

Hypotheses:

PLAN: Name of procedure
Check conditions:

$$
\begin{aligned}
& \text { You can skip } \\
& \text { the conditions }
\end{aligned}
$$

Statistic:

Significance level:

都

as a class
\qquad

Are some groups underrepresented?

According to phys.org. Black and Hispanic females are underrepresented in STEM programs compared to
non-STEM programs. A certain university would like to see if this is true for their student population. They
to took a random sample of 300 STEM students and found that 12 were Black or Hispanic females. A took a random sample of 300 STEM students and found that 12 were Black or Hispanic
seoarate random samole of 500 non-STEM students had 75 Black or Hisoanic females.

Do the data provide convincing evidence that Black and Hispanic females are underrepresented in STEM programs? Use a 5% significance level.
state: Parameter: $P_{1}-P_{2}$
Hypotheses:

$$
\begin{aligned}
& -p_{2}=0 \\
& p_{1}-p_{2}<0
\end{aligned}
$$

- differ. in the true

Statistic: $\widehat{P}_{1}-\widehat{P}_{2}=$ prop. of Black and Hispanic females in Significance level: $\alpha=$ STEM and non-stem.

PLAN: Name of procedure: TWO-sample Check conditions:

$$
\begin{aligned}
& \text { You can skip } \\
& \text { the conditions }
\end{aligned}
$$

\bullet

NOTE

In a two-sample z test for a diff.
in proportions, we assume the null hypothesis
is true $\left(P_{1}=P_{2}\right)$.
So, when we get the formula for $S D$ it does not make sense to use a
different values (for p) because we are assuming the two proportions are equal so we must combine them

A significance test begins by assuming that $H_{0}: p_{1}-p_{2}=0$ is true. In that case, $p_{1}=p_{2}$. We call the common value of these two parameters p.

$$
z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-0}{\sqrt{\frac{p(1-p)}{n_{1}}+\frac{p(1-p)}{n_{2}}}}
$$

Unfortunately, we don't know the common value of p. To estimate p, we combine (or "pool") the data from the two samples as if they came from one larger sample.

A significance test begins by assuming that $H_{0}: p_{1}-p_{2}=0$ is true. In that case, $p_{1}=p_{2}$. We call the common value of these two parameters p.

$$
z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-0}{\sqrt{\frac{p(1-p)}{n_{1}}+\frac{p(1-p)}{n_{2}}}}
$$

A significance test begins by assuming that $H_{0}: p_{1}-p_{2}=0$ is true. In that case, $p_{1}=p_{2}$. We call the common value of these two parameters p.

$$
z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-0}{\sqrt{\frac{p(1-p)}{n_{1}}+\frac{p(1-p)}{n_{2}}}}
$$

Unfortunately, we don't know the common value of p. To estimate p, we combine (or "pool") the data from the two samples as if they came from one larger sample.

$$
\hat{p}=\frac{\text { number of successes in both samples combined }}{\text { number of individuals in both samples combined }}=\frac{X_{1}+X_{2}}{n_{1}+n_{2}}
$$

A significance test begins by assuming that $H_{0}: p_{1}-p_{2}=0$ is true. In that
 case, $p_{1}=p_{2}$. We call the common value of these two parameters p.

$z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-0}{\sqrt{\frac{p(1-p)}{n_{1}}+\frac{p(1-p)}{n_{2}}}}$
Unfortunately, we don't know the common value of p. To estimate p, we combine (or "pool") the data from the two samples as if they came from one larger sample.

$$
\begin{aligned}
& \hat{p}=\frac{\text { number of successes in both samples combined }}{\text { number of individuals in both samples combined }}=\frac{X_{1}+X_{2}}{n_{1}+n_{2}} \\
& \qquad \begin{array}{l}
z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-0}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n_{1}}+\frac{\hat{p}(1-\hat{p})}{n_{2}}}} \quad \text { p is the } \\
\text { combined prop }
\end{array}
\end{aligned}
$$

in some places (on-line sites/older textbooks)
l_{c} might be seen
cont use it be cause well
be saving the "c" for
be saving the "C" for

$$
\begin{aligned}
& \text { the } c \text { tor } \\
& \text { something else. }
\end{aligned}
$$

CONCLUDE:

Since the P-Value of $.0000006<\alpha=.05$
we reject Ho
There is convincing evidence to
support the claim that the true
difference in proportions of Black $\$$ Higamic
femates in SIEM and NOV-SEM is
greater than 0 .
leps than

Lesson 10.1: Day 3: A Significance Test for $p_{1}-p_{2}$

same as
$H_{0} P_{1}=P_{2}{ }^{1}$
sot

Lesson 10.1: Day 3: A Significance Test for $p_{1}-p_{2}$

Important ideas:
Hypotheses
Both Proportions Combined
$H_{0} \cdot P_{1}-P_{2}=0$
$\mu_{\hat{p}_{1}, \hat{p}_{2}}$

$H_{a} \cdot P_{1}-P_{2} \neq 0$

same as
Ho Pr
where $\hat{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}$
but do

Example of A Significance Test for $p_{1}-p_{2}$

Preschool - To study the long-term effects of preschool programs for poor children, researchers designed an experiment. They recruited 123 children who had never attended preschool from low-income families in Michigan. Researchers randomly assigned 62 of the children to attend preschool (paid for by the study budget) and the other 61 to serve as a control group who would not go to preschool. One response variable of interest was the need for social services as adults. Over a 10 -year period, 38 children in the preschool group and 49 in the control group have needed social services.

1. Do these data provide convincing evidence that preschool reduces the later need for social services for children like the ones in this study? Justify your answer.
$H_{0} P_{1}-P_{2}=0$
$\mathrm{Ha}_{a}: P_{1}-P_{2}<0$

P_{1}
$P_{2}=$

$$
\begin{aligned}
& \text { On to Pre-school } \\
& 4 \text {-Step Process } \\
& \text { formally } \\
& \text { (check conditions but } \\
& \text { you don' have } \\
& \text { to write down) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Conclude } \\
& \text { since p-value of } .0102<\alpha=05 \text {, we reject Ho } \\
& \text { - There is convincing evidence that } \\
& \text { the true proportion of children who } \\
& \text { attend preschool and use services is less than } \\
& \text { the true proportion of chidrun who attend } \\
& \text { pre-schod'and don't use services, }
\end{aligned}
$$

2. Based on your conclusion to Question 1, could you have made a Type I error or a Type II error? Explain your reasoning.

Because we rejected t_{0} it is possible we made a Type I error
(finding convidence that services made)
a difference when they did not

AP ® Exam Tip

The formula for the two-sample z statistic for a test about $p_{1}-p_{2}$ often leads to calculation errors by students.

As a result, your teacher may recommend using the calculator's 2PropZTest feature to perform calculations on the AP ® Statistics exam. (IDo!)

Be sure to name the procedure (two-sample z test for $p_{1}-p_{2}$) in the "Plan" step and report the standardized test statistic $(\mathrm{z}=-2.32)$ and P value (0.98) in the "Do" step.

This disadvantage of doing this on every problem on every
Significance Test for a difference of proportions (including tonight's assignment) is that you might not develop/practice some of the details for multiple choice questions.

The same formulas will apply in Ch. 12.

Take Home LCQ and ...

10.1....15, 19, 21, 29, 31-33
study pp. 645-654

Exp. Design 20

What is bias in conducting surreys?
(A) An example of sampling error
(B) Lack of a control group
(C) Confounding variables
(D) Difficulty in concluding cause and effect
(E) A tendency to favor the selection of certain members of a population

Answer: (E) Poorly designed sampling teedniques result in bias, that is, in a tendency to favor the selection of certain members of a population. For example, door-to-door surveys ignore the homeless, radio call-in programs giv malls typically give the opinions with strong optivions, and interviews at shopping malls typically give the opinions of a wery select sample of the population.

[^0]: EXPERIMENTAL DESIGN 19
 Two antidepressants are to be compared in the treatment of elderly patients in a nursing home. Each patient has his or her own room, some with spectacular views of the ocean. The experimental design is to create homogeneous blocks with respect to window view. How should randomization be used for a randomized block design?
 (A) Within each block, randomly pick half the patients to receive each antidepressant.
 (B) Randomly pick half of all patients to receive each antidepressant, but then analyze the results separately by blocks.
 (C) Randomly choose which blocks will receive which antidepressant.
 (D) Randomly choose half the blocks to receive each antidepressant for a given time period; then for the same time period switch the medication in each block and compare the results.
 (E) For ethical reasons, allow patients to choose which medication they prefer taking, but then randomly assign patients to the blocks.

